Source-sector NOx emissions analysis with sub-kilometer scale airborne observations in Houston during TRACER-AQ

By: Dan Goldberg

Milken Institute School of Public Health

Jeremiah Johnson

Team members:

Laura Judd M. Omar Nawaz Benjamin de Foy Greg Yarwood

ESA: TROPOMI on the Sentinel 5 Precursor Satellite

This research presentation was supported by funding from the Texas Commission on Environmental Quality (TCEQ). The findings, opinions, or conclusions expressed do not necessarily represent those of the TCEQ.

Motivation of the Project

GCAS aircraft column NO₂ measurements from 28,000 ft

The high spatial resolution of GCAS (250 x 560 m²) provides a unique ability to understand NO₂ sources

Goal: To better understand the sector-by-sector NO_X emissions in the Houston metropolitan area during the TRACER-AQ September 2021 field campaign using a combination of:

- Ground measurements (i.e., Pandora spectrometers and CAMS monitors)
- Aircraft observations (i.e., GV aircraft with GCAS flying at 28,000 ft)
- Chemical transport models (i.e., WRF-CAMx with source apportionment)
- Satellite data (i.e., TROPOMI)

- **Task 1.** Simulate NO₂, HCHO, O₃ at 444 × 444 m² spatial resolution using WRF-CAMx
- **Task 2.** Process the GCAS aircraft measurements 10 days during September 2021
- Task 3. Process the TROPOMI (satellite) NO₂ data during September 2021
- Task 4a. Comparison of NO₂ (and HCHO) from aircraft, satellite, model to the "gold-standard"
- Pandora and CAMS monitors (when applicable)
- Task 4b. Comparison of NO₂ (and HCHO) between model, aircraft, and satellite
- **Task 5.** Calculating NO_{χ} from spatially continuous NO_{2} airshed measurements
- **Task 6.** Use of a regression model to estimate potential NO_x emission adjustments for individual

Summary of conclusions

Inferring NO_x

emissions

CAMx NO₂ low bias worse in downtown

5

CAMx NO₂ low bias worse near roadways

TRACER-AQ WRF and CAMx Model Configuration

- Use TCEQ 36/12/4 km 2019 SIP modeling platform as starting point
- Updates to TCEQ SIP modeling
 - WRF
 - New 36/12/4/1.333/0.444 km simulation
 - Physics options similar to TCEQ SIP modeling
 - <u>15-minute output frequency</u>
 - CAMx
 - Initial 36/12/4 km simulation based on TCEQ platform
 - Extracted boundary conditions from CAMx 4 km domain
 - 1.333/0.444 km domains over Houston to match resolution/extent of GCAS measurements
 - Emissions
 - Updated EGU emissions to use 2021 hourly CEMS data for top NOx emitters
 - 444 m resolution on-road and shipping emissions
 - Natural emissions driven by new WRF simulation
 - Re-processed 4 km emissions for other sectors to new grids

CAMx NO₂ Tagging and EGU NOx Emissions

Number	Tagged Emissions Sector		Station	NOx (tons/month)
1-9	EGUs		W A Parish	570.7
10	On-road mobile		Cedar Bayou	73.0
11	Railyards		Pasadena Power Plant	34.7
12	Shipping		Texas City Cogeneration	34.6
13	KHOU airport		Odyssey Energy Altura Cogen, LLC	30.8
14	KIAH airport		Deer Park Energy Center	27.4
15	Other		South Houston Green Power Site	25.9
		_	Air Liquide Bayport Complex	25.0

* Not tagged individually, but emissions from 2021 CEMS data

Channelview Cogeneration Facility

25.0

NOx and VOC Emissions Summary for 444 m Domain

* Off-road mobile includes non-road and railway emissions

9

444 m On-Road Mobile and Shipping NOx Emissions

Daily Total NOx Emissions On-Road Mobile

- Uses 2019 TCEQ on-road mobile link-based emissions
- Re-process links at 444 m resolution

Shipping

Daily Total NOx Emissions

- Uses MARINE Emissions Resolver (MARINER) v2
- Vessel ID, location, operation: Automatic Identification System (AIS) data for 2021
- Vessel characteristics: IHS database

CAMx Ozone and NO₂ Model Performance at CAMS

- Overall excellent MDA8 ozone performance
 - NMB (± 5%) and NME (< 15%) very close to goal benchmark
- Overall low NO₂ bias, largest at higher observed NO₂ concentrations
- Smallest NO₂ bias at locations away from large emission sources
- Largest biases w/in Houston core near large emission sources
 - Houston SW Freeway CAMS ~50 m from roadway

Hourly Tagged NO₂ Contributions – Sep 8, 2021

10.0 8.0 6.0 4.0

2.0 0.8 0.4 0.1

September 8, 2021 00:00 CST

How is remotely-based NO₂ "measured"?

- Radiances measured in the 400-450 nm visible wavelength region (indigo) are used to create a <u>total</u> <u>slant column</u> between detector and ground
- 2. Use an "air mass factor" partially derived from a model
 to convert slant column to vertical column

W.A. Parish Power Plant

Near-real-time images of TROPOMI NO₂

tropomino2.us

GCAS column NO₂ data from September 8, 2021

How does GCAS aircraft compare to Pandora? Matches Pandora with excellent correlation

• Pandora uses fewer assumptions and assumed to be closest to a "reference"

How does GCAS compare to Pandora? Matches Pandora with excellent correlation

Pandora 58

La Porte Municipal Airport, LaPorte(TX)

Pandora 11

Pandora 58

Pandora 63

le16

3 Pandora sites during TRACER-AQ: Aldine, U. Houston & LaPorte

Excellent correlation at the Aldine & University of Houston sites

Pandora 25 located at U. Houston situated on the ground, while Pandora 188 on top of the building

TROPOMI column NO₂ data

How does TROPOMI compare to Pandora? Appears to have a low bias but good correlation

Comparison of CAMx against TROPOMI – Sep 8, 2021

• Houston has complex NO₂ emission signatures at finer scale than TROPOMI can resolve

Performance of CAMx NO₂ column vs Pandora: Low bias and relatively low correlation

Low correlation ($r^2 = 0.25$) and a NMB of -20.2%.

Low correlation could be related to the difficulty in simulating wind direction and the Gulf/Bay breeze

Not shown: NMB worse on weekdays (7 days) than weekends (3 days)

CAMx has low NO₂ bias in downtown Houston

GCAS vs. CAMx:

Worse low bias (-32.9%) than the CAMx vs. Pandora intercomparison (-20.2%)

But the correlation between CAMx and GCAS was very strong ($r^2 = 0.82$)

Largest difference between CAMx and GCAS is in the downtown section of Houston

Deriving NOx emissions in the metropolitan area Implicating missing on-road NO₂ sources

22

Deriving NOx emissions in the metropolitan area Implicating missing on-road NO₂ sources

Using a MLR model to estimate potential sector discrepancies: Background NO_2 in CAMx is too low

Figure showing scale factor needed for CAMx tagged NO_2 in order to replicate the GCAS NO_2

- Near 1 \rightarrow no change needed
- >>1 → NO₂ needs to increase;
 NOx underestimate
- <<1 \rightarrow NO₂ needs to decrease; NOx overestimate

Using a MLR model to estimate potential sector discrepancies: On-road NO_X emissions may be too low by factor of 1.72

- Near 1 \rightarrow no change needed
- >>1 → NO₂ needs to increase;
 NOx underestimate
- <<1 \rightarrow NO₂ needs to decrease; NOx overestimate

Using a MLR model to estimate potential sector discrepancies: Railyard and airport NO_{χ} emissions may be too low by factor of 1.5

Figure showing scale factor needed for CAMx tagged NO_2 in order to replicate the GCAS NO_2

- Near 1 \rightarrow no change needed
- >>1 → NO₂ needs to increase;
 NOx underestimate
- <<1 \rightarrow NO₂ needs to decrease; NOx overestimate

Using a MLR model to estimate potential sector discrepancies: Shipping NO_X emissions may have a slight NO_X overestimate

Figure showing scale factor needed for CAMx tagged NO_2 in order to replicate the GCAS NO_2

- Near 1 \rightarrow no change needed
- >>1 → NO₂ needs to increase;
 NOx underestimate
- <<1 \rightarrow NO₂ needs to decrease; NOx overestimate

28

Conclusions (Part 1)

Task 1:

 CAMx (444 × 444 m²) achieves the goal benchmark for MDA8 ozone but has a low bias for NO₂ at CAMS monitors (NMB of -59.1%), which we partially attribute to the difficulty of capturing hourly and near-road variability.

Task 2:

- GCAS aircraft-based measurements acquired fine-scale structure of urban NO₂ (250 × 560 m²).
- GCAS column NO₂ has excellent agreement with Pandora NO₂ (r^2 =0.81 and NMB of +6.3%)

Task 3:

 Satellite NO₂ has great correlation with Pandora measurements (r²=0.62), but a low bias (-11.7%).

Conclusions (Part 2)

Task 4:

- CAMx versus Pandora column NO₂ showed a low bias in CAMx (–20.2%)
- CAMx versus GCAS column NO₂ showed larger CAMx NO₂ underestimates (-27%) and especially in downtown Houston.

Task 6:

 MLR suggests that NO_x from on-road mobile, railyard (weekday), and airport (weekend) may be underestimated.

Task 5:

- The Flux Divergence method was able to distinguish the linear shape of major highways, many of the large point sources, and the Galveston Bay ship track.
- Point source NOx emissions matched reasonably well with the exception of the Baytown area on September 8, 2021 (modelled NOx too low)

Future recommendations

- Investigate biases found for on-road and port (rail, airport, shipping) NOx emissions in a new CAMx simulation, while also accounting for the different weekday/weekend biases.
 - \circ Is there better agreement between observations and CAMx when NO_x emissions are increased?
- Investigating the cause of the low bias in TROPOMI over Houston.
 - Related to pixel size or something else? How does the NASA algorithm perform? Does TEMPO observe the same patterns as GCAS and TROPOMI?
- Use TROPOMI to investigate NO₂ over longer timeframes.
 - Are similar patterns seen? Are spatial NO₂ trends consistent with the NO_x inventory trends?
- More upper tropospheric measurements and measurements outside of urban locations are needed to better constrain GCAS and TROPOMI in the less polluted areas of Texas.
 - Performance of GCAS outside of urban areas is largely unvalidated. AEROMMA 2023 campaign will help.
- Further analysis of HCHO
 - Do anthropogenic VOC emissions need to be increased? If VOC emissions need to be modified, how does this affect the NO₂ lifetime, model NO₂ intercomparison, and O₃ model performance?

EXTRA Figures

TROPOMI NO₂ v2.3.1

TROPOMI NO₂ v2.3.1

TROPOMI NO₂ v2.4

GCAS

CAMx Column HCHO

TROPOMI Column HCHO

