Quantifying the Emissions and Spatial/Temporal Distributions of Chemical Volatile Chemical Products (VCPs) in the Greater Houston Area

Yue Zhang¹, Alana Dodero¹, Sining Niu¹, Sahir Gagan¹, Yeaseul Kim¹, Raghu Betha², Gregory Vandergrift³, Swarup China³

1 Department of Atmospheric Sciences, Texas A&M University, College Station, TX, 77845, USA 2 Department of Civil, Environmental & Construction Engineering, Texas Tech University, TX, 79409, USA 3Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA

AQRP Workshop Austin, TX 2023/8/31

TEXAS A&M

Ā M

Atmospheric Sciences

Air pollution and VOC

- Volatile organic compounds (VOCs) can lead to the formation of major atmospheric pollutants, such as photochemical ozone (O₃) and particulate matter (PM)
- Traditionally, VOCs generated in the urban environment comes from **traffic** and **tailpipe emissions**, **power plants**, and **residential combustion**
- Traffic related VOC emissions have decreased rapidly during recent years, leading to an increase of the relative contribution of other types of VOCs such as VCPs

Ā M

https://research.noaa.gov

What is VCP?

Ā M

Volatile chemical products (VCPs):

- Cleaning Products
- Personal care products
- Adhesives and sealants
- Paints and coatings
- Printing inks
- Pesticides
- Dry cleaning

Compounds such as **D5-siloxane, ethanol**, **alkenes**, and **monoterpenes** are major VCP emission sources in the urban environment.

VCP relative Contribution

- The green bars and symbols and dashed arrow illustrate the large reductions in tailpipe VOC emission factors
- Yellow bars represent VCP emissions

Ā Ň

VCP Model Results

- Model results agree relatively well with outdoor measurement data
- Indoor measurement is about one order of magnitude higher than modeling results

Ā M

VCP Model Results

- Contribution of VCP to air quality
- VCP contributes a significant of ozone and SOA in Los Angeles

TEXAS A&M

RSITY

Ă M

VCP Mobile Results

- VCP Mobile Sampling in North America and Europe
- High concentration of D5-Siloxane in major cities
- High concentration of certain VCPs correlates with population density

Ā M

Primary hypothesis: the VCPs in the Greater Houston Area account for a significant portion of the total VOC emission and have important implications on the regional ozone concentrations that were previously not captured by the emission inventory and models.

- **Task 1:** Determine the spatial and temporal distribution of VCPs in the Greater Houston Area
- Task 2: Characterize the Seasonality Difference of VCP in the Houston Area
- Task 3: Assess the effects of urban VCPs on air quality, including summertime MDA8 O₃ and monoterpene SOA

TEXAS A&M

ĀM

Research approach

TRAM Van

The outside look:

Ā M

The inside structure:

Vocus CI-MS

Vocus 2R Chemical Ionization Time-of-Flight Mass Spectrometer (Vocus CI-MS)

A combination of the regular Vocus CI-*MS* and AMS system will be able to detect the total amount of VCPs in the gasand particle-phase species.

TEXAS A&M

E

RSITY

M

AMS

Soot Particle Aerosol Mass Spectrometer (SP-AMS)

Provides real-time, in situ measurements of black carbon containing particles

Measure aerosol mass loadings

Summary of the Instruments

Instrument	Parameter	Data		
SP-HR-ToF-AMS		VCP-derived Particle mass loading. The	Additional Collaborators	
	peak area	quantification of the VCP mass loading can be used		
		to understand how much VCP can be oxidized in the		
		atmosphere to form aerosols.		
		VCP concentration. The quantification of VCP can	Dr. Daghy Partha Taxas	
HR-ToF-Vocus CIMS	peak area	be used to calculate VCP emissions and chemical	DI. Kagilu Delula, Texas	
Instruments		transformations in the atmosphere.	Tech University,	
Aethalometer	Optical sensor	Total black carbon and brown carbon measured	aethalometer	
	signal	during selected time intervals	Dr. Swarup China and	
CO analyzer	Instrument peak	CO concentration measured from the gas phase	Team, Pacific Northwest National Laboratory, filter	
	area	CO concentration measured from the gas phase		
NO ₂ analyzer	Optical sensor	NO concentration measured from the gas phase		
	signal	100 ₂ concentration measured from the gas phase	analysis	
	Mass		anarysis	
Filters	spectrometer	Organic species detected on the filters		
	signals			

Field measurement

In October-November 2022, January-February 2023, and August 2023, drive the TRAM van to circle around Houston and Corpus Christi, based on the blueand green-shaded routes in the right Figure to capture additional VCP emission patterns (deliver 10-15 days of useful data deployment)

Factors being measured:

- VCPs
- GPS location
- CO concentration
- Temperature, relative humidity
- Aerosol mass loading
- NO_x, and other gas concentrations

ĀM

Figure. Field deployment map of the Texas A&M Mobile Van.

Field measurement schedule

	Fall			Winter	
Date	Route	Ionization Mode	Date	Route	Ionization Mode
10/30	Round	$\mathrm{NH_4^+}$	1/12	North South	$\mathrm{NH_4^+}$
11/02	East West	$\mathrm{NH_4^+}$	1/13	Round	$\mathrm{NH_4^+}$
11/04	Round	$\mathrm{NH_4^+}$	1/14	Round	NH_4^+
11/05	North South	H^+	1/15	East West	$\mathrm{NH_4^+}$
11/06	Round	H^+	1/17	Round	H^{+}
11/07	Round	H^+	1/18	Round	H^+
11/09	East West	H^+	1/19	North South	H^{+}
			1/21	East West	H^+
			1/22	North South	H^+
			1/23	Round	H^+
			1/24	North South	H^{+}

15

TEXAS A&M

A M

Field measurement routes

Three major routes

Circle East-West North-South

TEXAS A&M

AM

Six major VCP precursors

- D-5 Siloxane
- D-4 Siloxane
- PCBTF (Para-Chlorobenzotrifluoride)
- > Monoterpenes
- p-Dichlorobenzene
- ➤ Texanol

Fully calibrated before and during the field project using pure standard with Vocus CI-MS

➤ Texanol

Fall

Ă M

Winter

➢ PCBTF

Fall

A M

Winter

> Monoterpenes

A M

Fall

Winter

➢ D5-Siloxane

Fall

Winter

➢ D4-Siloxane

Fall

➢ D4-Siloxane

Fall

Fall

Winter

AM

EXAS A&M

Ā M

➤ VCP correlation with CO

TEXAS A&M

Ā M

Measurement Comparison

Averaged Seasonal Concentrations

	Acetone	MEK	D4-siloxane	D5-siloxane	Monoterpenes	PCBTF	Texanol
Fall NH₄+	4.5625	0.6567	0.0198	0.0167	0.1187	0.0007	0.0004
Fall H ⁺	3.7724	0.8411	0.0007	0.0117	0.279	0.003	0.0006
Winter NH4 ⁺	7.3146	5.1618	0.0187	0.0132	0.0425	0.0002	0
Winter H ⁺	1.4651	0.3049	0.0003	0.0101	0.0872	0.0013	0.0003

Major VCPs in the Houston Area do not have a seasonal difference in its concentration, except for monterpenes.

TEXAS A&M

A M

Model Simulations

How does the field measurement serve to improve model simulations?

- 1. Three sets of VCP emissions from the traditional models will be compared with our field measured seasonal data:
 - First emission: National Emissions Inventory (NEI)
 - Second emission: VCPy emission inventory

2. Model performance statistics for O_3 , NO_x , and $PM_{2.5}$ will be statistically evaluated to ensure that the model captures the general feature of air pollution during the study periods.

3. The inventory that leads to better overall model performance will be selected for further improvement to assess the impacts of VCPs on O_3 and SOA

TEXAS A&M

Ā M

CMAQ Modeling

Based on CMAQ v5.0.1 with updates of the gas and aerosol mechanisms to model SOA from monoterprenes

Gas phase chemistry – SAPRC-11D (SAPRC-11 but with the maximum reasonable number of emitted compounds represented explicitly)

Suitable for studying oVCPs: The reactions of major oVCPs, including methanol, ethanol, isopropanol, ethylene glycol, propylene glycol, glycerol, and acetone, are explicitly represented by the mechanism

TEXAS A&M

Ā M

Emissions

Biogenic emissions – MEGAN (Model for Emissions of Gases and Aerosols from Nature) v3.1. Modified to generate emissions of VOCs matching the detailed species in SAPRC-11D

Anthropogenic emissions – 2019 Emissions Modeling Platform from US EPA

Based on 2017 NEI, updated to represent emissions in 2019. No further adjustments for 2022.

VOC speciation profiles were generated for the SAPRC-11D mechanism based on the latest **SPECIATE 5.2** speciation profile data base.

Non-point source solvent utilization emissions (cleaners, personal care products, adhesives, architectural and aerosol coating, printing inks, and pesticides) were derived using the using the volatile chemical products in Python (VCPy) framework

Model Domains and Episodes

- Four-level nested domains
- 36-km, 12-km and 4-km resolution domains based on TCEQ 8-hour ozone attainment modeling
- A finer resolution (1.33-km) domain was nested to provide the detailed spatial distribution of air pollutants in Houston

Ā M

Modeling episodes: October 16-21, 2022; November 1-12, 2022 (this presentation).

The observation sites for ozone (a), $PM_{2.5}$ (b), and (c) meteorological data within the 1.33-km domain

Emissions of n-hexane and dlimonene

n-hexane

kg/h

Ă M

TEXAS A&M

Significant contributions from biogenic emissions, with large anthropogenic emissions in the urban areas. The anthropogenic emission rates are probably too low.

Anthropogenic emission dominated

Meteorological fields

Generated using WRF v4.4

Inputs

European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5), with hourly reanalysis meteorological fields at 137 model levels with a resolution of 0.25x0.25 degrees

Model performance

Variable	MB	GE	RMSE
Т (К)	-0.33	1.72	2.13
WD (°)	12.42	26.26	39.56
WS (m/s)	0.18	1.18	1.53
RH (%)	1.16	9.15	11.8

Model performance benchmark T: MB<±0.5K, GE<2.0 K WS: MB<±0.5 m/s, GE<2.0 m/s, RMSE<2.0 m/s WD: MB<±10°, GE<30°

Ā M

Meteorological model performance generally meets the suggested benchmark (Emery et al., 2001)

EXAS A&M

Y

Ā M

Modeled criteria pollutants – PM2.5

30°30'N

30°N

29°N

28°30'N

ep 29°30'N itinqe he Woodland

Houston

Longitude

GE

Bay City

Sugar Land

[Green: Observations; Black: Predictions]

EXAS A&M

Ā M

Modeled criteria pollutants – NO₂

[Green: Observations; Black: Predictions]

Modeled criteria pollutants $-NO_2$

Ă M

[Green: Observations; Black: Predictions]

Units: ppb

&V

Ya

100 80 60

Modeled criteria pollutants $-O_3$

- Captured the higher O3 concentrations during the day
- Overpredicted the nighttime concentrations.
- Excess downward mixing in colder weather?

Modeled criteria pollutants $-O_3$

&M

Ya

Δ

A M

Modeled criteria pollutants $-O_3$

 $\& \mathbf{N}$

Ya

Ā M

Modeled criteria pollutants – October O₃

 $\& \mathbf{N}$

Y

A M

Modeled Organic Compounds at Auto-GC sites

Major findings

• Larger alkanes (C6-C10) are better predicted than smaller alkanes (C3-C5)

Ă M

 Smaller alkanes have larger contributions from VCPs – VCP emissions are underestimated?

TEXAS A&M

• Aromatic compounds are well represented

Modeled Organic Compounds at Auto-GC sites

Propane tceq sites 202211

[Green: Observations; Black: Predictions]

Compare with mobile platform measurements - CO

Time

Major findings from the CO data

TEXAS A&M

• The predicted concentrations are significantly lower than the observations

Ā M

- mobile platform is significantly influenced by the tailpipe emissions from on-road vehicles
- The lowest values in the observations matched the predictions
 - measurements were not affected by immediate tailpipe emissions

Compare with mobile platform measurements - acetone

19:30

19:45

20:00

Time

20:15

20:30

Major findings - acetone

TEXAS A&M

Y

• Significantly under-predicted

M

- Except for the first day (11/2), the dayto-day variations of acetone was captured well
- Under estimation by a factor of 8-10
 - Adjust speciation profiles to fix the problem?

Compare with mobile platform measurements – methyl ethyl ketone

01:15 01:30

01:45

02:00 02:15

00:30 00:45 01:00

Time

16:00

17:00 18:00 19:00 20:00 21:00 22:00

Major findings - MEK

TEXAS A&M

• Significantly under-predicted

Ā M

- Day-to-day variations of acetone was not as well captured as acetone
- Under estimation by a factor of 5-10

MEK and acetone

Concentration ratio

Acetone/MEK

Emissions

Emission ratio is approximately 2:1

- Observation ratios ~ 5
- Modeled ratios match observations on some days
- Cause of the variations need to be investigated.

Compare with mobile platform measurements – Monoterpene

02:00

00:30

01:00

01:30 Time

20:0

22:00

16:00 17:00 18:00 19:00

• Significant under-prediction

Ā M

• Emission are potentially underestimated

TEXAS A&M

The predicted monoterpene concentrations are the sum of α -pinene, β -pinene, d-limonene, Δ 3-carene, and sabinene

Conclusions

- All major VCPs were able to be detected by the Vocus CI-MS down to ppt-ppb levels
- Major VCP concentrations detected over Houston using two ionization modes do not show strong seasonal difference, except for monoterpenes

TEXAS A&M

ĀM

- CMAQ model has been used to estimate normal pollutants monitored by the TCEQ and VCP concentrations
- Regular criteria pollutants agreed with CMAQ modeling results better compared with VCP.
- Certain VCP concentrations seems to be underestimated by the CMAQ model.

Acknowledgement

Thank you!

This research was supported by funding from the Texas Commission on Environmental Quality (TCEQ). The findings, opinions, or conclusions expressed do not necessarily represent those of the TCEQ.

Ā M