Using Global and Regional Models to Represent Background Ozone Entering Texas

AQRP Project 12-011 Chris Emery, Ed Tai, Greg Yarwood ENVIRON International Corporation Meiyun Lin Princeton University/NOAA GFDL

November 14, 2013

Background

- Ozone production, transport, and fate are highly dynamic
 - Multitudes of anthropogenic and natural sources
 - Many spatial and temporal scales
- EPA requires photochemical modeling to demonstrate attainment of the national ozone standard
 - As local emissions are reduced, uncontrollable "background" ozone becomes more significant
 - The background must be more accurately characterized
- In response, regulatory modeling domains are getting bigger
 - Regional models now cover the US and include worldwide contributions estimated by global models
 - Model "downscaling" via boundary conditions (BCs)

Background

- TCEQ uses the CAMx regional photochemical model for research and regulatory photochemical modeling
- Two popular global models have been routinely coupled to CAMx:
 - GEOS-Chem (Bey et al., 2001), Harvard University
 - MOZART-4 (Emmons et al., 2010), NCAR and others
 - Both employ parameterizations to treat stratospheric ozone
- A newer global model has gained attention lately
 - AM3 (Donner et al., 2011), Princeton University, NOAA GFDL
 - Fully coupled stratospheric-tropospheric chemistry and dynamics (Lin et al., 2012; Naik et al., 2013)

Objectives

- Develop boundary condition inputs for CAMx using GEOS-Chem, MOZART, and AM3
 - Use a CAMx modeling database for 2008
- Analyze ozone sensitivity in and around Texas to choice of global model
 - Quantitatively compare performance throughout the southern US against available rural ozone measurements
 - Assess ability to provide reasonable boundary conditions for regional downscaling

Approach Global Modeling

• MOZART-4

- Acquired from NCAR
- 2008 6-hr global fields, 2.8° lat/lon, 28 vertical levels
 up 40 km
- GEOS-5 global meteorological analyses
- Data were mapped to CAMx/CB05 BCs using MOZART2CAMx interface program

Approach Global Modeling

- GEOS-Chem v9-01-02
 - Run by ENVIRON
 - 2008 6-hr global fields, 2×2.5° lat/lon, 47 vertical levels up to 80 km
 - GEOS-5 global meteorological analyses
 - Doubled 2006 Asia NOx inventory (Zhang et al., 2009)
 - Data were mapped to CAMx/CB05 BCs using the GEOS2CAMx interface program

Approach Global Modeling

• AM3

- Run by Princeton
- 2008 6-hr global fields, ~200x200 km, 48 vertical levels up to 86 km
- Nudged to NCEP/NCAR reanalysis meteorological analyses
- RCP8.5 emissions (high scenario from 5th IPCC), 2005-2010 interpolated to 2008
- Data processed to standard 2° lat/lon grid
- ENVIRION and Princeton developed a new interface tool to map data to CAMx/CB05 BCs

Approach CAMx Modeling

- April-October 2008 regional modeling database
 - Developed independently by Alpine Geophysics
 - Used for several concurrent AQRP modeling projects
 - Includes both ozone (CB05) and particulate matter
 - CAMx run with BCs from each global model
 - CAMx sensitivity test with invariant BCs to provide a simple reference frame
 - Ozone = 30 ppb
 - NOx = 0.1 ppb
 - NOz = 1 ppb (HNO₃, HONO, N_2O_5)
 - CO = 100 ppb
 - VOC = 5 ppbC

Approach CAMx Modeling

Model Component	Description	-2736.0 2592	0
Modeling Period	April 1 - October 18, 2008		1944.0
Modeling Domain	36/12 km resolution (4 km not used)		
Vertical Structure	30 Vertical Layers		
Meteorological Model	WRF	The King of the second se	
Chemical Mechanism	CB05		
Deposition	Zhang		
Emissions			
Biogenics	GloBEIS		
On Road Mobile	MOVES		
Off Road Mobile	EPA NEI	1 to have the second se	
Shipping	EPA NEI	Sill in the second	
Area Source	EPA NEI	20	
Point Source	TCEQ		
Wildfire	BlueSky/EPA SMARTFIRE 2		
		0 20 40 60 80 100 120 148	-2088

Performance Evaluation Sites

- Southwest
- South-central
- **Southeast**

Monthly Global Model 6-hr Ozone Statistics

Summary – Global Model Statistics

- Similar performance among all global models
 - Very large global model over prediction bias in SC and SE US during warm season (May – Oct)
 - Coarse resolution → increases ozone production efficiency, reduces ozone chemical sinks
 - Too much ozone over Gulf, convective influences?
 - All 3 global models performed better in the SW US
 - MOZART and AM3 performed well year-round
 - GEOS-Chem too high during warm season (lightning NOx)
 - AM3 performed best in spring (stratospheric-tropospheric exchange)

Monthly Global/CAMx 6-hr Ozone Statistics

Model Performance Aloft August-Average Houston Ozone Profiles

14

Model Performance Aloft May-Average Boulder Ozone profiles

15

Summary – CAMx Model Statistics

- CAMx warm-season bias in SC and SE US better than global models by 10-20%
 - Fairly insensitive response to the choice of boundary conditions
 - 6-hr bias/error metrics influenced by over predictions of low ozone at night
 - Bias for MDA8 reduced ~20%
- Simple time/space-constant BCs led to only minor improvements
 - Suggests local causes in the CAMx modeling
 - No clearly superior source of boundary conditions

Summary – CAMx Model Statistics

- CAMx performed best in SW US
- MOZART, GEOS-Chem, and related CAMx runs under estimated ozone in the spring months
 - Influenced by deep vertical transport from upper troposphere and lower stratosphere
 - Higher terrain elevation
- AM3 and related CAMx run performed better
 - But CAMx has coarse vertical resolution aloft \rightarrow diffusion
 - Simple BC's clearly inferior in SW US
 - Performance aloft impacts surface ozone over the western US, including west Texas
- AM3 was a superior source of BCs for the SW US

Coastal CAMx Model Performance

18

Monthly Coastal CAMx 1-hr Model Performance

Summary – Coast Site Analysis

- Ozone performance at coastal sites
 - Routinely measure very low ozone during on-shore flow
 - Often influenced by BCs
 - Minor source impacts between the boundaries and the Texas coastline
 - Over predictions of nearly 100% at two sites during mid-summer (5-10 ppb observed vs. 30 ppb modeled)
 - Practically identical results among all models
 - Missing important ozone destruction mechanism?

Acknowledgements

- Harvard University <u>http://acmg.seas.harvard.edu/geos/ index.html</u>
- NCAR <u>http://www.acd.ucar.edu/gctm</u>
- Princeton/NOAA GFDL <u>http://www.gfdl.noaa.gov/atmospheric-model</u>
- EPA CASTNET http://epa.gov/castnet/javaweb/index.html
- NOAA ESRL/GMD http://ftp.cmdl.noaa.gov/ozwv/ozone/
- Valparaiso University <u>http://physics.valpo.edu/ozone/</u> houstondata 2008 2011.htm #2008

This research was supported by the State of Texas through the Air Quality Research Program (AQRP) administered by The University of Texas at Austin by means of a grant from the Texas Commission on Environmental Quality (TCEQ), AQRP Project 12-011

TCEQ has not yet reviewed the final project report and has not fully reviewed the findings presented here

Monthly CAMX MDA8 Ozone Statistics

