Ethene (CH ₂ =CH ₂) Propene (CH ₂ =CHCH ₃)	1-Butene (CH ₂ =CHCH ₂ CH ₃) cis/trans-2-Butene (CH ₃ CH=CHCH ₃) Isobutene (CH ₂ =C(CH ₃) ₂) 1,3-Butadiene (CH ₂ =CHCH=CH ₂)	1-Pentene (CH ₂ =CHCH ₂ CH ₂ CH ₃) 1-Hexene (CH ₂ =CHCH ₂ CH ₂ CH ₂ CH ₃) cis/trans-2-Pentene (CH ₃ CH=CHCH ₂ CH ₃) 2-Methyl-2-butene (CH ₃ CH=C(CH ₃) ₂)	Ozone (O ₃)
		Mechanisms	/ CMAQ

Environmental chamber experiments and CMAQ modeling to improve mechanisms to model ozone formation from HRVOCs

Gookyoung Heo,^a William P. L. Carter, ^a Qi Ying^b

^aCenter for Environmental Research and Technology, University of California, Riverside ^bZachry Department of Civil Engineering, Texas A&M University

AQRP Project Presentation Meeting, Austin, TX, November 14, 2013

Outline

- Background
- Overall approach of this project
- Part I: Chamber experiments, mechanism development and evaluation
- Part II: CMAQ simulations
- Conclusions

Background: Ozone and HRVOC emissions

- Emissions of <u>Highly Reactive Volatile Organic Compounds</u> (<u>HRVOCs</u>) contribute to ozone pollution in Houston.
- Emissions of HRVOCs (ethene, propene, isobutene, 1-butene, cis-2-butene, trans-2-butene, 1,3-butadiene) are regulated in Southeast Texas (Title 30, Texas Administrative Code, Chapter 115; TCEQ, 2013, http://www.tceq.texas.gov/airquality/stationary-rules/voc/hrvoc.html).

2015, http://www.tceq.texas.gov/airquality/stationary-rules/voc/nrvoc.ntml

(Source: http://maps.google.com)

VERSIDE Background: HRVOC emissions and chemical mechanisms

- **Condensed chemical mechanisms** commonly used for air quality modeling are designed to model O₃ formation from typical urban ambient VOC mixtures.
- Reliable chamber experimental data for mechanism evaluation are available only for ethene and propene among the 7 alkenes regulated as HRVOCs.

7 HRVOC alkenes

Ethene (CH₂=CH₂) Propene (CH₂=CHCH₃)

1-Butene (CH₂=CHCH₂CH₃) trans-2-Butene (CH₃CH=CHCH₃) cis-2-Butene (CH₃CH=CHCH₃)

Isobutene (CH₂=C(CH₃)₂)

```
1,3-Butadiene (CH<sub>2</sub>=CHCH=CH<sub>2</sub>)
```

Non-HRVOC alkenes in urban emissions

1-Pentene (CH₂=CHCH₂CH₂CH₃)

1-Hexene (CH₂=CHCH₂CH₂CH₂CH₃)

trans-2-Pentene (CH₃CH=CHCH₂CH₃) cis-2-Pentene (CH₃CH=CHCH₂CH₃)

2-Methyl-2-butene (CH₃CH=C(CH₃)₂)

Overall approach of this project

- Project team:
 - Gookyoung Heo and William Carter (UCR)
 - Qi Ying (TAMU)
- **Overall objective**: Develop more reliable chemical mechanisms that can be used to simulate ozone formation from both urban emissions and industrial HRVOC emissions.
- Tasks of this project:
 - Design and carry out chamber experiments (UCR)
 - Evaluate and develop mechanisms (UCR)
 - Implement mechanisms into CMAQ (TAMU)
 - Carry out CMAQ simulations (TAMU)
- Project officers:
 - Elena McDonald-Buller (AQRP project officer)
 - Ron Thomas (TCEQ liaison)

Part I: Experiments carried out at UCR

- 25 experiments (50 reactor runs) for the 10 test alkenes.
- 11 experiments for chamber characterization or quality assurance.
- <u>36 reactor runs</u> were selected and used for evaluating and improving mechanisms.

		Compound	Planned	Carried	Used
	Con La			out	
		1-butene	3	4	4
		<mark>isobutene and and and and and and and and and and</mark>	3	5	4
	E IN CASE	trans-2-butene	2	4	3
CR's EPA chamber building Dual read	tors	cis-2-butene	3	6	4
(two read	tors)	1,3-butadiene	3	4	4
Enhanced banks of	frame allows reactors to	1-pentene	2	4	4
blacklights 200 KW	pressure control	1-hexene	2	5	5
arc light This volume kept (not used for clear to maintain light Dual Teflon this project) uniformity Reactors		cis-2-pentene	2	4	2
Two air handlers ft. are located in the	Mixing system under floor	trans-2-pentene	2	4	2
conners on each	el leactors	of reactors 2-methyl-2-butene 2			4
		[sum]	24	50	36
Temperature controlled room flushed Access SMPS (PM) Gas s with purified air and with reflective Door Instrument labo material on all inner surfaces	ample lines to ratory below			1	

Schematic of the UCR's EPA chamber on the second floor

Mechanisms and performance metrics used

- Mechanisms used:
 - SAPRC-07T (S07T): "toxics" version of SAPRC-07 already implemented and available in CMAQ (Hutzell et al, 2012).
 - SAPRC-11D (S11D): detailed SAPRC-11 which uses updated reactions for aromatic compounds (Carter and Heo, 2013) and ~330 model species to more explicitly represent reactive VOC emissions.
 - SAPRC-11L (S11L): standard-lumped version of SAPRC-11 using the same lumping methods used for the standard-lumped SAPRC-07L (Carter, 2010).
- Performance metrics:
 - Maximum O₃: highest O₃ concentration by the end of the experiment if O₃ increases by less than or equal to 5% in the last 30 minutes of the experiment.
 - $D(O_3-NO)$ Rate: average rate of change of $D(O_3-NO)$ between the starting time of the irradiation (i.e., t = 0) and the time of $0.5 \cdot Max(D(O_3-NO))$ $D(O_3-NO) = accumulated O_3$ formation and NO oxidation

 $= ([O_3]_t - [O_3]_0) + ([NO]_0 - [NO]_t)$

UCRIVERSITY OF CALIFORNIA

Mechanism evaluation and development: (1) Propene

UCRIVERSITY OF CALIFORNIA

(2) Unbranched terminal alkenes

For 1-hexene, even with SAPRC-11D, Max(O_3) was overpredicted, and SAPRC-07T better simulated Max(O_3) than SAPRC-11D.

In a test version of SAPRC-11D, increasing the NOx sink resulted in improving the $Max(O_3)$ performance.

Note: 1-hexene behaves differently from 1-butene and 1-pentene due to a major role of H-shift isomerization of alkoxy radicals (RO⁻) formed from reaction with OH.

UC RIVERSITY OF CALIFORNIA

 $\mathbf{A}_{\mathbf{M}} \mid \mathbf{TEXAS}_{\mathbf{U} \ \mathbf{N} \ \mathbf{I} \ \mathbf{V} \ \mathbf{E} \ \mathbf{R}} \mathbf{A}_{\mathbf{S}} \mathbf{A}_{\mathbf{M}} \mathbf{M}$

Experimental

SAPRC-07T

SAPRC-11L

SAPRC-11D

UC RIVERSITY OF CALIFORNIA

(5) 1,3-Butadiene

Mechanism performance summary

woder blas – (moder-experiment)/average(moder, experiment)

*Results are not shown for SAPRC-07T simulations of propene and 1,3-butadiene because these compounds are represented explicitly so the results are essentially the same as for SAPRC-11D.

The average model biases of $D(O_3-NO)$ Rate by SAPRC-07T for 1-butene and 2-methyl-2-butene were -76% and -106%, respectively. The average model biases of $D(O_3-NO)$ Rate by SAPRC-11L for propene and 2-methyl-2-butene were -75% and -107%, respectively.

Part I - Summary

- This project generated experimental data useful to evaluate mechanisms for the 10 alkenes (5 HROVCs and 5 non-HRVOCs).
- The detailed SAPRC-11 (SAPRC-11D) modeled ozone formation from the tested alkenes generally better than the condensed versions.
- SAPRC-11D also showed limitations:

(1) overpredicted $Max(O_3)$ for 1-hexene by ~20%.

(2) underpredicted $Max(O_3)$ for 2-methyl-2-butene by ~20%.

(3) underpreticted the ozone formation and NO oxidation rate by ~65% and underpredicted Max(O_3) for 1,3-butadiene by ~25%.

- The results for propene, 1-butene, 1-pentene and 1-hexene indicate that C₃₊ 1-alkenes share similar O₃ formation chemistries but also have differences among those 1-alkenes.
- The results for cis/trans 2-butene and 2-pentene indicate that unbranched internal alkenes share similar ozone formation chemistries.
- Isobutene and 2-methyl-2-butene behave differently from unbranched internal alkenes in regard to ozone formation.

Part II – CMAQ simulations: Model set-up

- SMOKE2.6/CMAQ v5.01
- Episode: 8/28 9/15/2006
- Meteorology: TCEQ MM5
- Domain: TCEQ 8-h SIP
 36, 12, 4 and 2-km grids
- Emissions
 - 2005 NEI v4.2 + TCEQ point sources
 - Biogenic emissions: BEIS v3.14
 - □ VOC speciation: SPECIATE 4.3 + TCEQ
 - □ Wildfire: FINN (NCAR)

Chemical Mechanisms

- □ S11D (422 spcs, 1127 rxns)
- □ S11L (126 spcs, 354 rxns)
- □ S07L* (133 spcs, 609 rxns)
- □ S07T* (150 spcs, 689 rxns) * "C" version

The Continuous Ambient Monitoring Stations (CAMS) are: (a) HALC, (b) HNWA, (c) HWAA, (d) HLAA, (e) HCQA, (f) BAYP, (g) HSWA, (h) SHWH, (i) HROC, (j) HOEA, (k) C35C, and (l) DRPK.

UCRIVERSITY OF CALIFORNIA

Fractions of alkenes in OLE1 and OLE2

Results – Alkenes (2)

Auto GC measurements, ppbC

Results – Ozone time series

AQRP Project Presenation Meeting, Austin, TX

Results – Ozone statistics

	MNB					MN	IE		AUP			
	S11D		S11L		S11D		S11L		S11D		S11L	
	4km	2km	4km	2km	4km	2km	4km	2km	4km	2km	4km	2km
HALC	-0.08	-0.06	-0.11	-0.09	0.15	0.15	0.17	0.17	-0.05	0.00	-0.08	-0.03
HNWA	-0.07	-0.07	-0.10	-0.10	0.12	0.13	0.14	0.14	-0.06	-0.04	-0.09	-0.06
HWAA	0.02	0.03	-0.02	-0.01	0.16	0.15	0.15	0.15	0.05	0.06	0.02	0.03
HLAA	0.04	0.00	0.00	-0.04	0.17	0.16	0.15	0.16	0.10	0.07	0.04	0.03
HCQA	0.06	0.08	0.02	0.04	0.26	0.26	0.24	0.25	0.14	0.16	0.13	0.12
BAYP	-0.21	-0.22	-0.24	-0.25	0.24	0.25	0.26	0.27	-0.20	-0.20	-0.21	-0.23
HSMA	-0.03	-0.02	-0.06	-0.05	0.23	0.23	0.23	0.23	0.04	0.04	0.00	-0.01
SHWH	-0.10	-0.08	-0.14	-0.12	0.23	0.23	0.23	0.23	-0.02	0.01	-0.06	-0.03
HROC	-0.12	-0.08	-0.15	-0.13	0.22	0.22	0.23	0.21	-0.06	-0.03	-0.08	-0.07
HOEA	-0.11	-0.15	-0.15	-0.18	0.20	0.21	0.21	0.22	-0.12	-0.15	-0.15	-0.18
C35C	-0.17	-0.24	-0.18	-0.28	0.22	0.27	0.23	0.30	-0.06	-0.14	-0.03	-0.18
DRPK	-0.08	-0.04	-0.11	-0.07	0.17	0.17	0.18	0.18	-0.04	-0.02	-0.06	-0.05
Avg	-0.07	-0.07	-0.10	-0.11	0.20	0.20	0.20	0.21	-0.02	-0.02	-0.05	-0.05

$$MNB = \frac{1}{N} \sum_{i=1}^{N} \frac{C_{m,i} - C_{o,i}}{C_{o,i}} \qquad MNE = \frac{1}{N} \sum_{i=1}^{N} \frac{|C_{m,i} - C_{o,i}|}{C_{o,i}} \qquad AUP = \frac{C_{p,ppeak} - C_{o,opeak}}{C_{o,opeak}}$$

UC RIVERSITY OF CALIFORNIA

Results – Regional differences

Timing results Time (hours per/day)

- All runs using 8 physical cores (each core is from an Intel Q6600 2.4GHz CPU node with 2G of DDR2 RAM)
- Gigabit Ethernet connection. Results write to an NFS mount.
- MPI: MPICH2 v2.1.4
- Program compiled using the Intel Fortran Compiler (ifort) v11.1 with the following compiler options:

-O3 -xSSSE3 -override-limits -fno-alias -mp1 -fp-model precise

Part II - Summary

- Predicted cis-2-butene, trans-2-butene, 1-pentene, cis-2pentene and trans-2-pentene are lower than AutoGC measurements at C35C and DRPK (more significant at DRPK).
- S11D gives slightly better ozone model performance than S11L. 2-km and 4-km results are similar in terms of ozone model performance – 4 km is adequate for ozone modeling.
- S11D predicts higher O₃ and PAN throughout the domain than S11L. S11D predicts higher OH and HO₂ in urban Houston areas and lower OH and HO₂ in areas with less anthropogenic emissions than S11L.
- S11D is approximately 3 times more computationally intensive than other lumped mechanisms.

Conclusions (1)

- This project has provided experimental data to evaluate mechanisms for the 10 studied compounds that will eventually contribute to increasing the accuracy of ozone predictions in Texas.
- The detailed SAPRC-11 (SAPRC-11D) reasonably simulated ozone formation from 7 of the 10 alkenes while the performance for 1,3-butadiene, 1-hexene and 2-methyl-2-butene was not satisfactory.
- Isoprene and 1,3-butadiene have many similar mechanistic features. Thus, knowledge gained during updating the isoprene chemistry should be used to update the 1,3-butadiene chemistry, and vice-versa.
- In re-deriving lumping methods for the tested 10 alkenes for the Houston area, reliable emissions data as well as the mechanism evaluation results of this project should be considered.

Conclusions (2)

- Chemically detailed emissions data were useful in inspecting consistency <u>between</u> the compositions of the lumped alkene species (OLE1 and OLE2) used during deriving the mechanism <u>and</u> the emissions inventory data that air quality simulations heavily rely on.
- Explicitly modeling propene and 1,3-butadiene is potentially useful to improve the accuracy of ozone predictions based on the spatial variability of propene and 1,3-butadiene emissions in the Houston area.
- Detailed chemical mechanisms were able to yield better model performance than lumped mechanisms although at a cost of more computation time. A mechanism with a small number of important explicit VOC species should be developed to improve model performance without much penalty for computation time.
- Additional analysis (e.g., process analysis) is needed to explain differences in modeled O₃, PAN, OH and HO₂ between SAPRC-11D and SAPRC-11L.
- Further work is needed to limit the impact of uncertainties in emissions on mechanism comparison under ambient conditions.

Acknowledgements

- This presentation is based on work (AQRP Project 12-006) supported by the State of Texas through the Air Quality Research Program administered by The University of Texas at Austin by means of a grant from the Texas Commission on Environmental Quality.
- Elena McDonald-Buller (AQRP) and Ron Thomas (TCEQ)
- Ajith Kaduwela (CARB) and Deborah Luecken (U.S. EPA) for providing VOC emissions data.

Extra slides

Lumping methods for the 10 alkenes

Tested alkenes	Lumping method							
	SAPRC-07T	SAPRC-11L	SAPRC-11D					
1-Butene	OLE1	OLE1	BUTENE1 ^a					
Isobutene	OLE2	OLE2	ISOBUTEN ^a					
trans-2-Butene	OLE2	OLE2	T2BUTE ^a					
cis-2-Butene	OLE2	OLE2	C2BUTE ^a					
1,3-Butadiene	13-BUTDE ^a	OLE2	BUTDE13 ^a					
1-Pentene	OLE1	OLE1	PENTEN1 ^a					
1-Hexene	OLE1	OLE1	HEXENE1 ^a					
trans-2-Pentene	OLE2	OLE2	T2PENT ^a					
cis-2-Pentene	OLE2	OLE2	C2PENT ^a					
2-Methyl-2-butene	OLE2	OLE2	M2BUT2 ^a					

*Explicit model species is used instead of OLE1 or OLE2.

Compounds and weighting factors used to derive the mechanisms for the OLE1 and OLE2 lumped model species in the SAPRC-11L and SAPRC-07T mechanisms

Compounds and weigh	nt factors for OL	E1	Compounds and weight factors for OLE2				
Compound	SAPRC-11L	SAPRC-07T	Compound	SAPRC-11L	SAPRC-07T		
propene	29.4%	a	isobutene	10.3%	10.9%		
1-butene	11.9%	16.9%	cis-2-butene	8.8%	9.3%		
1-pentene	11.5%	16.2%	trans-2-butene	11.0%	11.6%		
1-hexene	23.7%	33.5%	cis-2-pentene	14.3%	15.1%		
1-heptene	11.0%	15.5%	trans-2-pentene	14.3%	15.1%		
1-nonene	4.8%	6.8%	cis-2-hexene	4.5%	4.8%		
1-octene	2.2%	3.1%	trans-2-hexene	4.5%	4.8%		
1-undecene	1.8%	2.5%	trans-2-heptene	1.7%	1.8%		
1-decene	0.9%	1.2%	trans-3-heptene	3.9%	4.2%		
3-methyl-1-butene	3.0%	4.2%	trans-4-nonene	2.2%	2.3%		
			trans-4-octene	1.9%	2.0%		
			trans-4-decene	0.7%	0.7%		
			trans-5-undecene	1.7%	1.8%		
			2-methyl-1-butene	8.2%	8.7%		
			3,4-diethyl-2-hexene	0.2%	0.2%		
			2-methyl-2-butene	4.6%	4.9%		
			cyclohexene	1.6%	1.7%		
			1,3-butadiene	5.6%	a		

Alkenes from TexAQS 2000

• Simulated using CMAQ-MCM at C35C

Ying and Li, Atmospheric Environment 45, 2011, 3244-3256

S07 model performance

Ð	MNB+2				MNE*			AUP₽	ę	ę	4	
20	S07T-	S07T-	S07L-	S07L-	S07T-	S07T-	S07L-	S07L-	S07T-	S07T-	S07L-	S11L-
ę	4km₽	2km₽	4km↔	2km₽	4km.₽	2km₽	4km↔	2km₽	4km₽	2km₽	4km₽	2km₽
HALC	-0.088¢	-0.066+2	-0.113¢	-0.091¢	0.175₽	0.178+2	0.173₽	0.174	-0.03+ ²	0.01↔	-0.06+2	-0.02 +2
HNWA @	-0.069+	-0.067+2	-0.093₽	-0.091¢	0.132+2	0.135+	0.132+	0.136	-0.02+	0.00↔	-0.04+2	-0.03÷
HWAA P	-0.0060	0.006	-0.023₽	-0.011¢	0.145	0.152+2	0.130+	0.134	0.04+	0.05+	0.01	0.03+
HLAA	0.013	-0.027¢	-0.004+2	-0.043+	0.152₽	0.165+	0.140+	0.154	0.05+	0.03+2	0.03+2	0.01
HCQA₽	-0.065+2	-0.043¢	-0.066+2	-0.046+3	0.267₽	0.265+	0.253+	0.252₽	0.07₽	0.11+2	0.07₽	0.10₽
BAYP₽	-0.164+	-0.132₽	-0.170+	-0.138+	0.279₽	0.275₽	0.272+2	0.268+2	-0.08+3	-0.05+	-0.09+2	-0.07+2
HSMA+	-0.151+	-0.143₽	-0.155+	-0.150+	0.273₽	0.276	0.263+	0.265₽	-0.09+2	-0.08+2	-0.10	-0.10
SHWH.	-0.128₽	-0.109+	-0.134÷	-0.114+2	0.239₽	0.240	0.229+	0.230₽	-0.01+ ²	0.01+2	-0.02 ₽	0.00₽
HROC+2	-0.381+	-0.388+2	-0.382₽	-0.397+	0.391₽	0.403+	0.389+	0.404	-0.23+	-0.22+ ²	-0.24+2	-0.23÷
HOEA	-0.223¢	-0.187÷	-0.244₽	-0.210+	0.261+2	0.231+2	0.266+	0.233₽	-0.11+2	-0.10+	-0.140	-0.13¢
C35C+P	-0.480	-0.532+ ²	-0.466¢	-0.539+	0.480₽	0.532+2	0.466+	0.539₽	-0.34+	-0.41+	-0.33+2	-0.43¢
DRPK+2	-0.180	-0.130₽	-0.195₽	-0.145+	0.245+2	0.230+	0.240	0.226	-0.09+	-0.06+	-0.11÷	-0.07+2
Avg.+	-0.160+	-0.151+2	-0.170+	-0.164+	0.253₽	0.257₽	0.246	0.251₽	-0.071¢	-0.060+2	-0.086	-0.077+2

Emission rates of 7 HRVOCs and 5 non-HRVOCs

Grid size: 4x4 km

Diurnal variation in alkene fractions

isobutene (0.12-0.20)

1,3-butadiene (0.2-0.34)

* Arbitrary picked grid cell in urban Houston area