AQRP Project 12-028

Implementation and evaluation of new HONO mechanisms in a 3-D Chemical Transport Model for Spring 2009 in Houston

Barry Lefer¹, Prakash Karamchandani², Chris Emery², Jochen Stutz³, Evan Couzo⁴, William Vizuete⁴, and Greg Yarwood²

> ¹University of Houston, Houston, TX ²ENVIRON International Corporation, Novato, CA ³University of California at Los Angeles, CA ⁴University of North Carolina, Chapel Hill, NC

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

HONO is an important OH Source

R1. HONO + $hv \rightarrow$ OH + NO (λ <400 nm)

FIGURE 7.8 Calculated rates of formation of OH radical from photolysis of HONO, O_3 , and HCHO at Long Beach, California, on December 10, 1987 (adapted from Winer and Biermann, 1994).

B.J. Finlayson-Pitts and J.N. Pitts, "Chemistry of the upper and lower atmosphere: theory, experiments, and applications", Academic Press, 969 p., 2000

Basic HONO Formation and Loss Reactions

- R1. HONO + $hv \rightarrow$ OH + NO (λ <400 nm)
- R2. NO + OH \rightarrow HONO
- R3. HONO + OH \rightarrow NO₂ + H₂O

$$[\text{HONO}]_{\text{ss}} = \frac{k_2[\text{NO}][\text{OH}]}{J_{\text{HONO}} + k_3[\text{OH}]}$$

HONO in Houston - 2006

HONO, pptv

HONO via DOAS – Spring 2009

Wong, KW., C. Tsai, B. Lefer, C. Haman, N. Grossberg, W.H. Brune, X. Ren, W. Luke, and J. Stutz: Daytime HONO vertical gradients during SHARP2009 in Houston, TX, Atmos. Chem. Phys., 12, 635-652, doi:10.5194/acp-12-635-2012, 2012.

Wong, KW., C. Tsai, B. Lefer, C. Haman, N. Grossberg, W.H. Brune, X. Ren, W. Luke, and J. Stutz: Daytime HONO vertical gradients during SHARP2009 in Houston, TX, Atmos. Chem. Phys., 12, 635-652, doi:10.5194/acp-12-635-2012, 2012.

HONO as a HOx source in Houston – Spring 2009

P(HOx) SHARP:

- HONO+hv in early morning
- O(¹D) + H₂O during daytime
- O₃+ alkene reactions at night

Contributions on a 24-hr basis:

 O_3 photolysis: 30% HONO photolysis: 22% HCHO photolysis: 13% O_3 +alkenes: 13%

L(HOx) SHARP:

dominant loss: OH + NO₂

Heterogeneous HONO formation not understood

- R4. $2NO_2 + H_2O + surface \rightarrow HONO + HNO_3$
- R5. $NO_2 + H_2O + surface reduced site \rightarrow$ HONO + surface oxidized site + OH^-
- R6. NO + NO₂ + H₂O + surface \rightarrow 2HONO
- R7. $HNO_3 + NO + glass surface \rightarrow HONO + NO_2$
- R8. $HNO_3 + HOA \ sfc \rightarrow HONO$

Note: Dark rxns appear to be SLOW.

- Finlayson-Pitts, B.J., Wingen, L.M., Sumner, A.L., Syomin, D., Ramazan, K.A., "The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: an integrated mechanism" Physical Chemistry Chemical Physics 5 (2), 223–242, 2003.
- Ziemba, L., Dibb, J., Griffin, R., Anderson, C., Whitlow, S., Lefer, B., Rappenglueck, B., and Flynn, J. "Heterogeneous conversion of nitric acid to nitrous acid on the surface of primary organic aerosol in an urban atmosphere", Atmos.

Other HONO formation rxns via photochemistry

- R9. $NO_2^* + H_2O \rightarrow OH + HONO$
- R10. $NO_2 + hv + humic acid \rightarrow HONO$
- R11. $NO_2 + hv + phenol (surface) + H_2O \rightarrow HONO$

R12. $HNO_{3(glass or leaf surfaces)} + hv \rightarrow HONO$

- R13. *ortho*-Nitrophenols + hv \rightarrow HONO
- R9. Li, S., Matthews, J., and Sinha, A.: Atmospheric hydroxyl radical production from electronically excited NO₂ and H₂O, Science, 319, 1657–1660, doi:10.1126/science.1151443, 2008.
- R10. Stemmler, K., Ammann, M., Donders, C., Kleffmann, J., and George, C.: Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid, Nature, 440, 195–198, doi:10.1038/nature04603, 2006.
- R11. George, C., Strekowski, R., Kleffmann, J., Stemmler, K., and Ammann, M.: Photoenhanced uptake of gaseous NO₂ on solidorganic compounds: a photochemical source of HONO?, Faraday Discuss., 130, 195–210, doi:10.1039 b417888m, 2005.
- R12a. Zhou, X., He, Y., Huang, G., Thornberry, T., Carroll, M., and Bertman, S.: Photochemical production of nitrous acid on glass sample manifold surface, Geophys. Res. Lett., 29, 1681, doi:10.1029/2002GL015080, 2002.
- R12b. Zhou, X., Zhang, N., TerAvest, M., Tang, D., Hou, J., Bertman, S., Alaghmand, M., Shepson, P., Carroll, M., Griffith, S., Dusanter, S., and Stevens, P.: Nitric acid photolysis on forest canopy surface as a source for tropospheric nitrous acid, Nat. Geosci., 4, 440–443, doi:10.1038/NGEO1164, 2011.
- R13. Bejan, I., Abd El Aal, Y., Barnes, I., Benter, T., Bohn, B., Wiesen, P., and Kleffmann, J.: The photolysis of ortho-nitrophenols: anew gas phase source of HONO, Phys. Chem. Chem. Phys., 8, 2028–2035, doi:10.1039/b516590c, 2006.

Examples of Recent Related Modeling Studies

• CMAQ

- Sarwar et al. (2008); Eastern US
- Czader et al. (2012); Houston
- Zhang et al. (2012); PRD Region; China
- WRF-Chem
 - Li et al. (2010); Mexico City
 - Li et al. (2011); China
- Parameterizations based on various combinations:
 - Heterogeneous reactions on ground and aerosol surfaces
 - Surface photolysis reaction for HNO₃
 - Surface photolysis reaction for NO₂
 - Reaction of photo-excited NO₂ with water
 - Direct HONO emissions
- Improvement in performance for HONO although the models still under-predicted HONO concentrations in some cases

Scope of AQRP Study

- Identify missing HONO formation pathways and recommend parameterizations based on analysis of SHARP 2009 data (UCLA and UH)
- Extend CAMx surface model to include surface processes for core model species (ENVIRON)
- CAMx modeling of SHARP 2009 period and process analysis (UNC)
- Refinement of surface model parameters based on comparisons of model predictions and SHARP measurements (All team members)

Simplified new/missing HONO sources

Primary emissions (0.8% of NOx emissions) RUN B

$$NO_{2 \text{ (on surface)}} + (H_2O) \rightarrow HONO$$

$$NO_{2 \text{ (on surface)}} + hv \rightarrow HONO$$

 $HNO_{3 \text{ (on surface)}} + hv \rightarrow HONO$

RUN H

CAMx Surface Model and Key Parameters

Surface-Air Partitioning Coefficients

Selection/Refinement of Model Parameters

- Based on consideration of the physical and chemical attributes of the relevant species (NO₂, HNO₃, HONO)
- Sensitivity studies varying parameters within range of plausible values
- Evaluation of results, analysis and discussion among team members
- Focus on HONO:NO₂ ratios at night rather than absolute HONO values due to large NO₂ overpredictions on some days

CAMx Modeling Domain and Simulations Nested 36/12/4 km grid Houston area subdomain 2080-2736 -1736 -736 Grid cell containing Moody Tower

- CAMx 6.1, CB6, WRF-AWR
- Base model (no surface model; no HONO emissions): Run A
- Base model with HONO emissions = 0.8% of surface NO_x emissions: Run B
- Sensitivity studies with different parameter values: Runs C to H
- Analysis for 4 clear days with high O₃ concentrations and some of the highest recorded HONO concentrations during SHARP campaign

NO₂ Emissions

HONO Concentrations

Run A

Run B

Run H

Gas-phase HONO Formation Only Gas-phase Chemistry + Direct HONO Emissions Gas-phase Chemistry + Surface Model

NO₂ Concentrations

HONO:NO₂ Ratios

April 21, 2009

May 20, 2009

Time Series of HONO Concentrations

April 21, 2009

May 20, 2009

Comparison of HONO Surface Emissions

Data	Ru	in B	Run H	
Date	µmole/day	ppbv/day	µmole/day	ppbv/day
April 20, 2009	1.07	25.8	2.52	60.3
April 21, 2009	1.06	25.8	2.87	69.9
May 19, 2009	1.09	26.3	4.84	116.9
May 20, 2009	1.08	26.4	6.45	156.9

Model Performance All Days (15 April – 30 May, 2009)

Model Run (Day/Night)	Normalized Mean Bias						
	HONO	NO ₂	HNO ₃	HONO:NO ₂	HONO:HNO ₃		
Run A (Day)	-59	70	58	-76	-89		
Run A (Night)	-83	83	80	-95	-03		
Run B (Day)	-23	69	59	-59	-68		
Run B (Night)	-1.5	83	82	-63	-52		
Run H (Day)	20	71	72	-29	-63		
Run H (Night)	50	86	96	-29	-44		

Effect on OH Concentrations

Effect on Daily Max 8-hour Average Ozone Concentrations

April 21, 2009

May 20, 2009

Summary

- New approach to modeling surface HONO formation implemented in CAMx
 - Deposition is not simply a removal process, but a dynamic process that makes deposited mass available for further chemical processing
 - Surface model will be part of core CAMx in future releases
- This AQRP study leveraged SHARP 2009 measurements to refine surface model parameterizations
- Surface model captures many of the observed features in SHARP HONO measurements
- Direct HONO emissions constitute less than 1% of NOx emissions for typical combustion sources and do not explain observed HONO levels and HONO:NO₂ ratios consistently
- HONO produced with the surface model has a substantial impact on morning OH levels, but only minor impacts on daytime OH and daily maximum 8-hour average O₃ concentrations

Acknowledgement

- This research was supported by the State of Texas through the Air Quality Research Program (AQRP) administered by The University of Texas at Austin by means of a grant from the Texas Commission on Environmental Quality (TCEQ), AQRP Project 12-028
- TCEQ has not yet reviewed the final project report and has not fully reviewed the findings presented here
- Alpine Geophysics