Apportioning the Sources of Ozone Production during the San Antonio Field Study

University of Texas, San Antonio

Floresville TCEQ Monitoring Site

Corpus Christi State Park

AQRP Workshop, August 22, 2017

Project Team AQRP 19-025

Tara Yacovitch tyacovitch@aerodyne.com Ezra Wood

Daniel Anderson

Drexel (Separately funded)

> Paola Masssoli

Scott Herndon

Roscioli Daube

Jordan

r

Jason Krechme Curry

Aerodyne Research, Inc.

Brian Lerner

Megan Claflin

Manjula Canagaratna

Berk Knighton Montana State University

Overview of Time Series

-96

-95

Different mass spectrometry options enable detection of different molecular signals

Volatility

Vast Amounts of Data

High-Resolution Analysis

 Extract multiple individual ion signatures from a single mass window

Averaged mass spectrum from the I⁻CIMS at the San Antonio measurement site during the SAFS. This example is relevant to all mass-spectral methods deployed at the SAFS.

HR Fitting Example

Left panel: contributions from individual ions to total UMR signal at m/z = 105. Right panel: Example chromatogram during pre-campaign testing showing UMR and individual ion chromatographic peaks at retention time = 584 sec.

Data Volume Problem

Problem

- Hundreds and hundreds of individual signals
 - Some known
 - Some with known

Solution

- Positive Matrix Factorization
 - Mathematical technique groups covarying signals into "factors"
 - Each factor has numerous contributing masses

Species of Atmospheric Interest

I-CIMS: Oxygenates and other Intermediates

Identifying Factors

- Identify using
 - literature [*Mohr et al.*, 2013] and
 - laboratory experiments [Aerodyne, unpublished]
- Known signatures:
 - Isoprene oxidation
 - Alpha-pinene oxidation
 - Biomass burning
 - Trimethyl benzene oxidation (high-NOx conditions)

Signature ions of each factor categorized according to their match with known source-specific ions.

I-CIMS Species of Interest

	Source Influences
Factor 1	Mixed Source
Factor 2	Instrument Artifact
Factor 3	Isoprene signature
Factor 4	Mixed Source
Factor 5	Mixed Source
Factor 6	a-pinene signatures
Factor 7	Instrument Artifact

PMF: VOCs and Direct Tracers

TILDAS Species	GC-EI-TOFMS Species	PTR-TOFMS Species
CO [ppm]	Benzene	Isoprene
Methane	Toluene	Monoterpenes*
Ethane	Ethylbenzene	Methyl vinyl ketone & methacrolein*
Ethyne	m&p-Xylenes*	Methanol
Formaldehyde	o-Xylene	Acetone
Formic acid	1,2,4-trimethylbenzene	Acetaldehyde
	i-Pentane	Dimethyl sulfide
NDIR Species	n-Pentane	Acetonitrile
CO ₂ [ppth]	n-Hexane	
Hydrogen cyanide	n-Octane	
	2,2,4-trimethylpentane	
	Methylcyclopentane	
	Cyclohexane	
	Methylcyclohexane	

PMF: VOCs and Direct Tracers

PMF results, with nominal description of each factor. Left: Individual factor contribution to total chemical burden. Right: chemical signature for each factor.

Apportioning the Sources of Ozone Formation

OH Reactivity to Apportion Ozone Formation

- Ozone depends on the interplay between NOx and VOCs
- VOCs reacting with OH kick off ozone chemistry.
- Aim to <u>apportion OH</u> <u>reactivity</u> to understand ozone formation

Silman and He, 2002

Relative impact of VOCs during Campaign

Where does the measured airmass originate?

- Previously:
 - Wind direction analysis
- Now:
 - Full Hysplit trajectory analysis
 - Land cover broadly categorized

Ecological and oil and gas mapping information is shown gridded onto a 0.025×0.025 decimal degree grid. The city bounds of San Antonio (center left) are outlined in black.

Where does the measured airmass originate?

Hysplit footprint overlap with 5 different land cover types. Measured isoprene, ethane and background carbon monoxide time traces are also shown. Shaded areas represent time spent at UTSA (blue), Floresville (green) and Corpus Christi State Park (pink).

Do Intermediates Matter?

Problem

- Hard to find unique intermediate
- Many measured oxygenated intermediates can have multiple sources

Solution

- Use a chemical model to keep score
- Model can allows us to follow each individual branching point

Significant Effort Required to Configure Model

- Igor Pro
- Dynamically Simple Model of Atmospheric Chemical Complexity (DSMACC) [Emmerson and Evans, 2009]
- Master Chemical Mechanism (MCM) version 3.3

Apportioning OH reactivity

Initial Igor/DSMACC model result Photostationary local noon on 5/13

- The intermediates are critical
- Dominant primary contributor is isoprene in San Antonio 5/12-5/14 2017
- Some species have both direct and indirect sources (e.g. HCHO)
- Model running now to account for HCHO from isoprene vs aromatics

[MACR+MVK] - Modeled ~ ½ Measured

Model incorporates isoprene, small alkane and simple aromatics, but need more long chain alkanes are needed

Anderson et al, ACP, 2019

Conclusions

- Composition of the atmosphere differs greatly between UTSA, Floresville
- Biogenic VOCs (e.g. isoprene from oak trees) contribute significantly to OH radical formation in the SAFS study area

Recommendations for Future Work: AQRP 19-025

Outstanding Questions

- More sophisticated model runs
 - Carbonyl sensitivity analysis, e.g.
- Biogenic precursors in SAFS area
 - Emissions inventories & spatial distributions
- Analysis of ozone mitigation strategies

Measurement Successes and Lessons-Learned

- Campaign Design:
 - 3 different locations
 - CAMS co-location
- Early strategies to manage volume of data/analysis produced by HR instruments
- Minimize gaps in measurements