

Annual Workshop Pickle Research Campus University of Texas, Austin June 17 - 18, 2015

Project 14-026

Quantifying ozone production from light alkenes using novel measurements of hydroxynitrate reaction products in Houston during the NASA SEAC⁴RS project

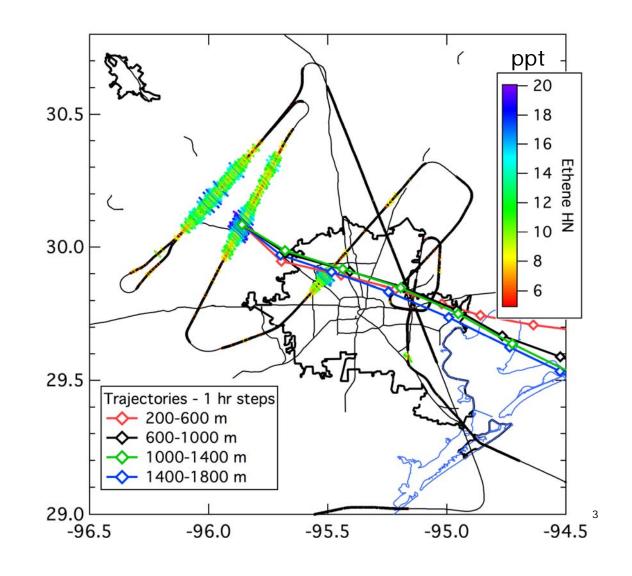
Greg Yarwood and Prakash Karamchandani (Ramboll Environ)

David Parrish

Thomas Ryerson (NOAA)

Paul O. Wennberg, Alex Teng and John D. Crounse (CalTech)

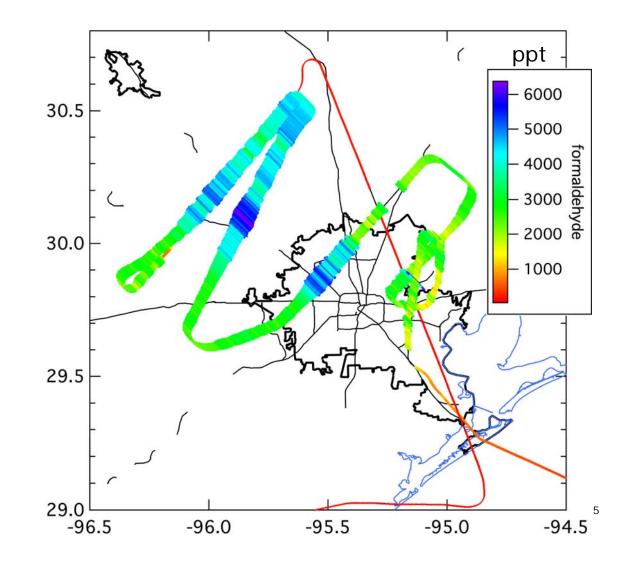
RAMBOLL ENVIRON


Project 14-026 - Quantifying ozone production from light alkenes using novel measurements of hydroxynitrate reaction products in Houston during the NASA SEAC⁴RS project

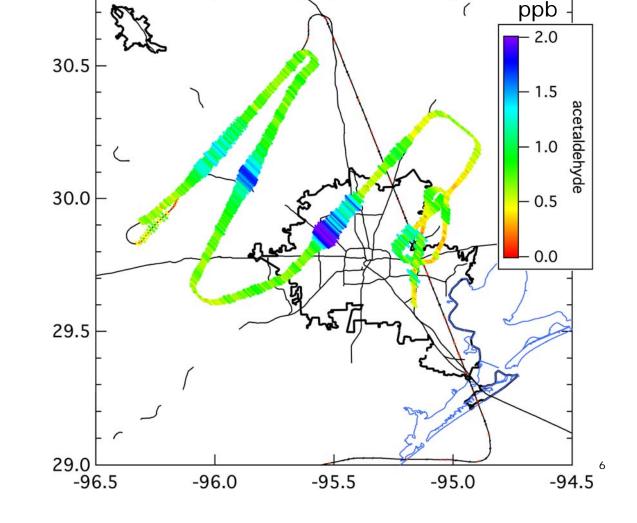
Today:

- Briefly summarize SEAC⁴RS data sets
- Briefly review O₃ production from alkene oxidation
- Demonstrate utility of hydroxynitrates as tracers of photochemistry
- Discuss difficulty arising from rapid atmospheric loss of hydroxynitrates and other secondary products
- Discuss need for and status of modeling

- Hydroxynitrates form downwind of ship channel
- Back trajectories verify origin of plume

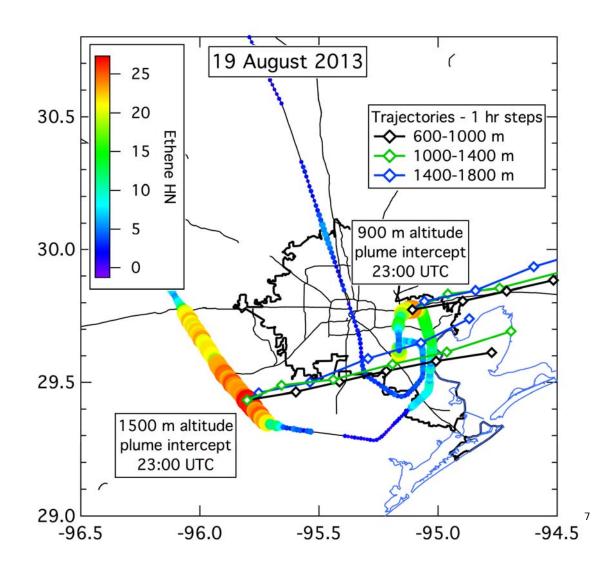


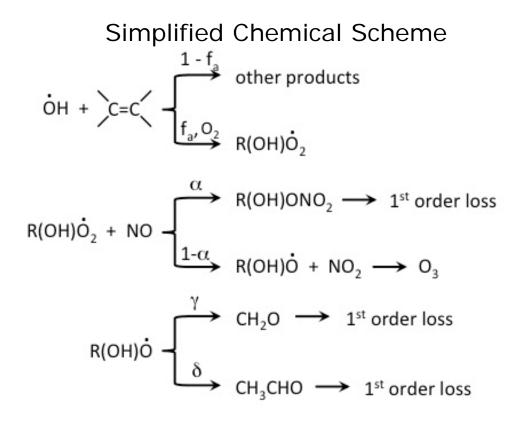
- ppb (- 70 30.5 - 60 - 50 Ozone 30.0 - 40 30 29.5 29.0 -96.0 -95.5 -95.0 -96.5 -94.5
- Hydroxynitrates form downwind of ship channel
- Back trajectories verify origin of plume
- O₃ correlates with hydroxynitrates



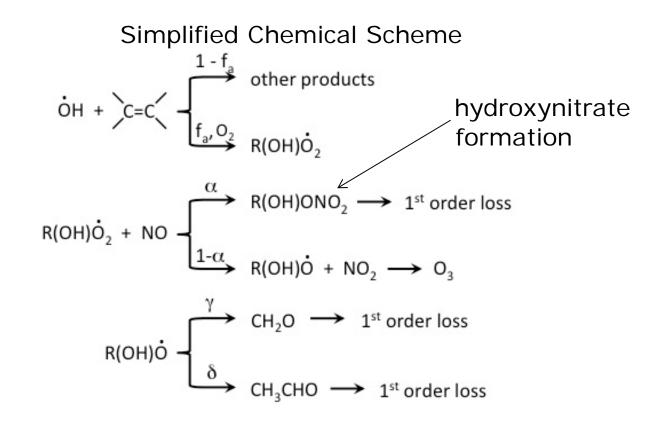
- Hydroxynitrates formed downwind of ship channel
- Back trajectory analysis verify origin of plume
- O₃ correlates with hydroxynitrates
- Aldehydes correlate with hydroxynitrates

- Hydroxynitrates formed downwind of ship channel
- Back trajectory analysis verify origin of plume
- O₃ correlates with hydroxynitrates
- Aldehydes correlate with hydroxynitrates

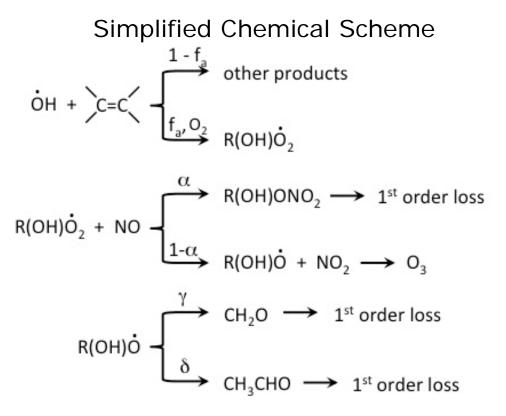



Ship Channel plumes were serendipitously intercepted on 10 additional SEAC⁴RS flights (e.g. 19 August 2013)

- Hydroxynitrates formed downwind of ship channel
- Back trajectory analysis verify origin of plume
- O₃ correlates with hydroxynitrates
- Aldehydes correlate with hydroxynitrates



Expected O₃ production from alkene oxidation

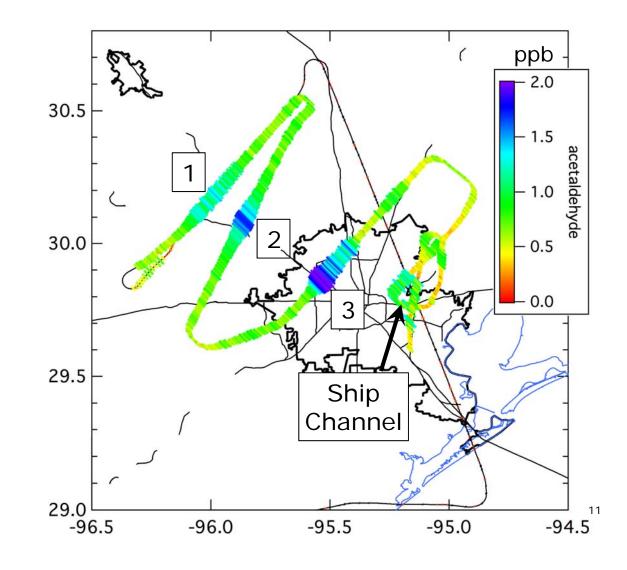


Expected O₃ production from alkene oxidation

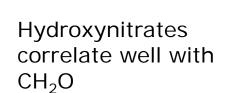
Expected O₃ production from alkene oxidation

Expected product relationships

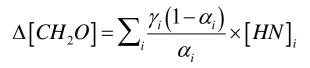
$$\Delta[O_3] = \sum_i \frac{O_3 yield_i}{f_{ai}\alpha_i} \times [HN]_i$$
$$\Delta[CH_2O] = \sum_i \frac{\gamma_i (1 - \alpha_i)}{\alpha_i} \times [HN]_i$$
$$\Delta[CH_3CHO] = \sum_i \frac{\delta_i (1 - \alpha_i)}{\alpha_i} \times [HN]_i$$

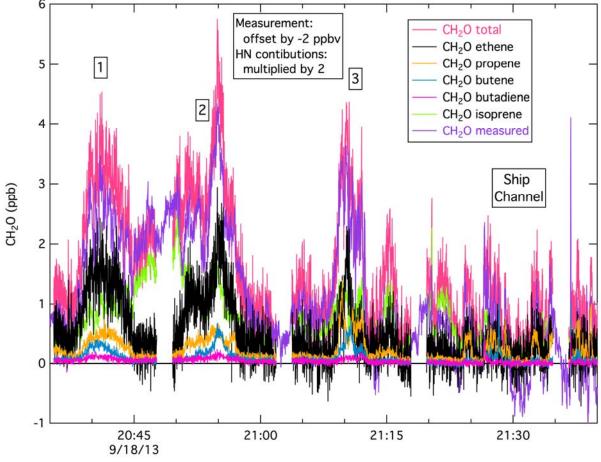

(index *i* identifies alkene)

alkene	f _a	α	γ	δ	O ₃ yield
ethene	1	0.023	1.6	0	1.95
propene	0.97	0.053	1	1	1.87
butene	0.97	0.106	1	1	1.76
butadiene	0.97	0.104	1	0	1.77
isoprene	0.92	0.12	1	0	1.69


10

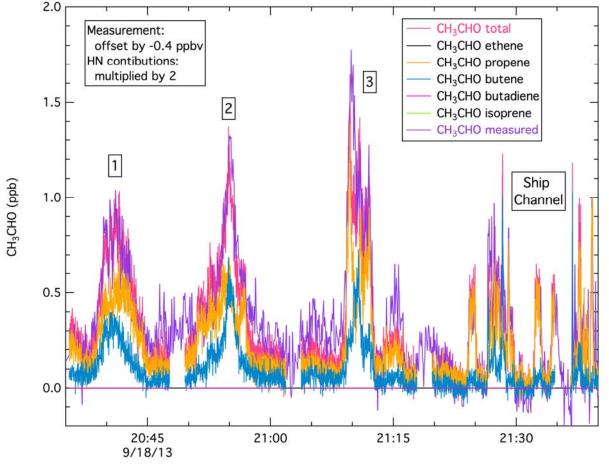
 Three downwind plume transects, plus sampling over ship channel




 Three downwind plume transects, plus sampling over ship channel

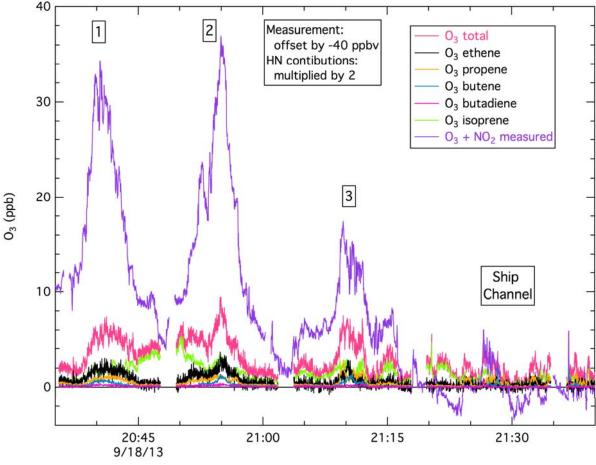
٠

- All 5 alkenes contribute to CH₂O
- <u>However</u>, need factor of 2 to explain magnitude of CH₂O observed



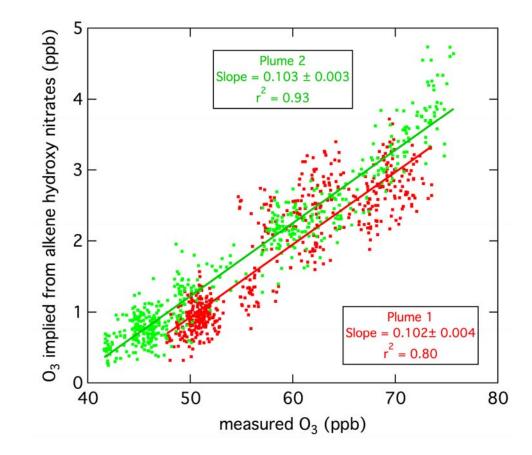
- Three downwind plume transects, plus sampling over ship channel
- Hydroxynitrates correlate well with CH₂O and CH₃CHO
- All 5 alkenes contribute to CH₂O
- Only propene and butenes contribute to CH₃CHO
- <u>However</u>, need factor of 2 to explain magnitude of aldehyde observed

$$\Delta [CH_{3}CHO] = \sum_{i} \frac{\delta_{i} (1 - \alpha_{i})}{\alpha_{i}} \times [HN]_{i}$$

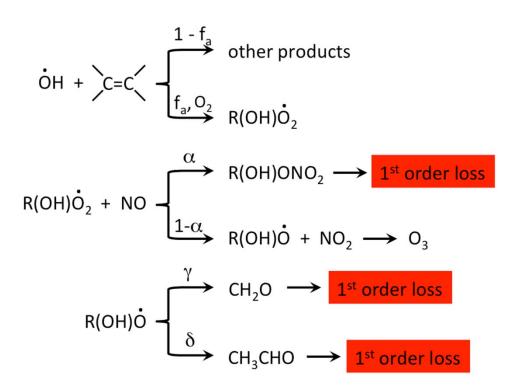


- Three downwind plume transects, plus sampling over ship channel
- Hydroxynitrates correlate well with CH₂O and CH₃CHO
- All 5 alkenes contribute to CH₂O
- Only propene and butenes contribute to CH₃CHO
- However, need factor of 2 to explain magnitude of aldehyde levels
- <u>A much greater factor</u> necessary to explain O₃ observed

Evidently, hydroxynitrates and aldehydes are rapidly lost on the time scale of hours!!

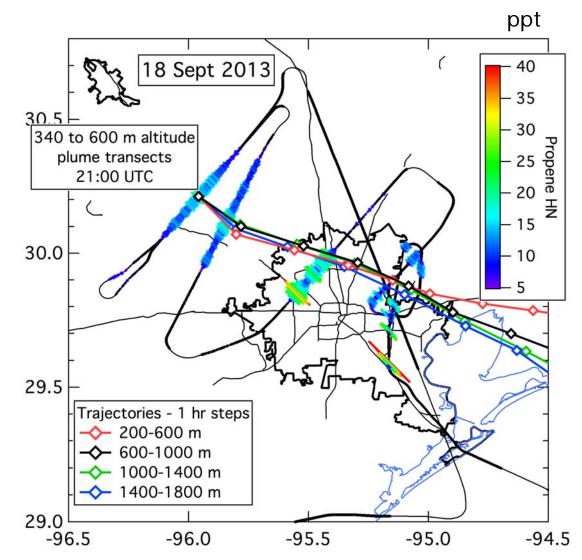

$$\Delta [O_3] = \sum_i \frac{O_3 yield_i}{f_{ai}\alpha_i} \times [HN]_i$$

- Three downwind plume transects, plus sampling over ship channel
- Hydroxynitrates correlate well with CH₂O and CH₃CHO
- All 5 alkenes contribute to CH₂O
- Only propene and butenes contribute to CH₃CHO
- However, need factor of 2 to explain magnitude of aldehyde levels
- <u>A much greater factor</u> necessary to explain O₃ observed. That factor is ~10
 RAMBOLL ENVIRON


Evidently, hydroxynitrates and aldehydes are rapidly lost on the time scale of hours!!

$$\Delta[O_3] = \sum_i \frac{O_3 yield_i}{f_{ai}\alpha_i} \times [HN]_i$$

Rapid atmospheric loss of hydroxynitrates and other secondary products


 Loss processes are equally important as production in determining concentrations of photochemical products

Rapid atmospheric loss of hydroxynitrates and other secondary products

- Loss processes are equally important as production in determining concentrations of photochemical products
- Plume transport is 4 to 5 hours at furthest downwind transect
- Most of hydroxynitrates and aldehydes have been lost, while O₃ accumulates
- Plume modeling required to quantitatively treat evolution of photochemical products

Rapid atmospheric loss of hydroxynitrates and other secondary products

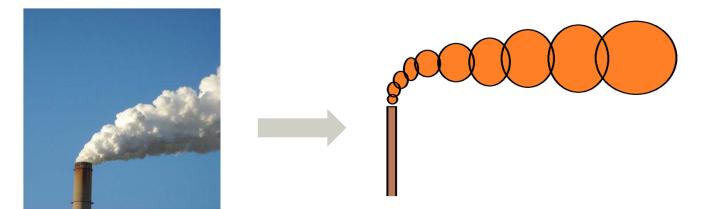
- Loss processes are equally important as production in determining concentrations of photochemical products
- Plume transport is 4 to 5 hours at furthest downwind transect
- Most of hydroxynitrates and aldehydes have been lost, while O₃ accumulates
- Plume modeling required to quantitatively treat evolution of photochemical products
- Reaction with OH, photolysis, and take up on aerosols are all important, but contributions vary between species – Critical to quantify in modeling

Species	Reaction with OH	Photolysis	Aerosol take up
formaldehyde acetaldehyde	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt$		
hydroxynitrates	v		

Relationships between photochemical products will vary with plume composition and meteorological conditions!!

Need for and status of modeling

- Quantitative assessment of HRVOC sources and their impacts on the Houston atmosphere
- Evaluate chemical mechanism for alkene oxidation and ozone and hydroxynitrate formation in HRVOC plumes
- Investigate how to model the Houston Ship Channel HRVOCs



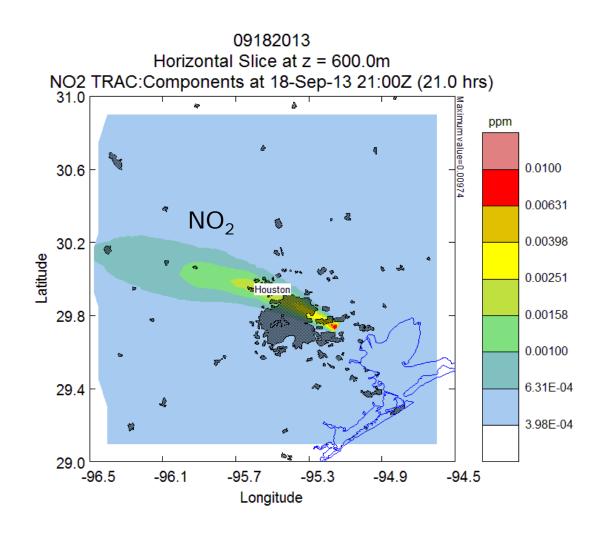
Need for and status of modeling

- Quantitative assessment of HRVOC sources and their impacts on the Houston atmosphere
- Evaluate chemical mechanism for alkene oxidation and ozone and hydroxynitrate formation in HRVOC plumes
- Investigate how to model the Houston Ship Channel HRVOCs
- Reactive plume modeling with SCICHEM 3.0
- Results for 18 September 2013 flight
- Preliminary simulations conducted to characterize Ship Channel emissions based on peak NO₂ plume concentrations
- Initial results shown here
- Refined modeling and analysis in progress

SCICHEM: SCIPUFF with Chemistry

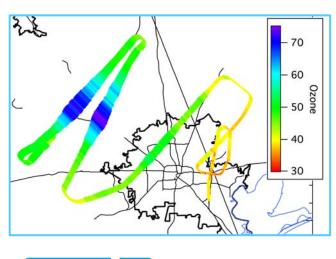
- Plume represented as a succession of puffs
- Puff dispersion based on SCIPUFF (Second Order Closure Integrated Puff Model)
- Full chemistry treatment, comparable to CAMx and CMAQ
- Latest version, SCICHEM 3.0, completed in June 2015
- Older version used in a previous AQRP project (10-020) to simulate Oklaunion power plant plume at night
- For AQRP 14-026, CB6r2 implemented for SCICHEM 3.0 and hydroxynitrate mechanism added

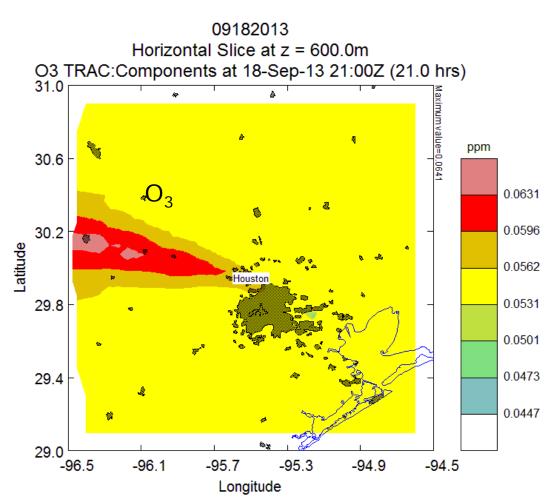
September 18, 2013 Plume


- Surface meteorology from KHOU (Houston Hobby) and KIAH (George Bush Intercontinental Airport)
- Upper air meteorology from KCRP (Corpus Christi) and DC-8 measurements during September 18, 2013 flight
- Initial width (~6 km) and height (600 m) of Ship Channel plume based on plume measurements over the channel
- Ship Channel Emissions:
 - Initial estimates of ship channel emissions for NOx, ethene, propene and alkanes based on SOF (Johansson et al., 2014)
 - Regression analysis of DC-8 ship channel plume measurements for other HRVOCs, aromatics and aldehydes with NOy and ethene measurements to estimate emissions of these species
 - Adjust emissions of NOx and other species to match peak measured NOy concentrations near the Ship Channel

^{*}Johansson, J. K. E., J. Mellqvist, J. Samuelsson, B. Offerle, B. Lefer, B. Rappenglück, J. Flynn, and G. Yarwood (2014), Emission measurements of alkenes, alkanes, SO₂, and NO₂ from stationary sources in Southeast Texas over a 5 year period using SOF and mobile DOAS, *J. Geophys. Res. Atmos.*, **119**, doi:10.1002/2013JD020485.

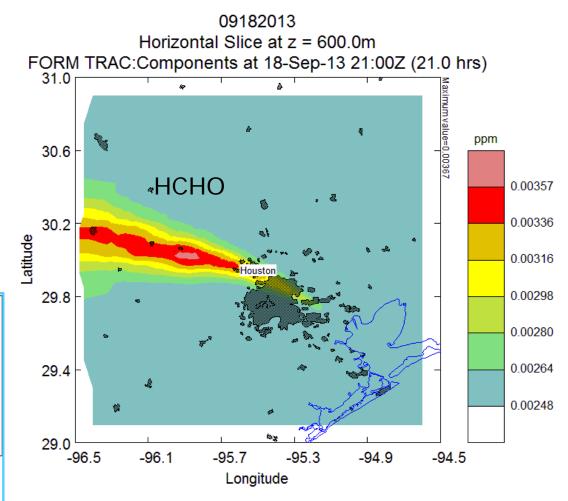
Preliminary Results from September 18, 2013 Simulation: Plume NO₂

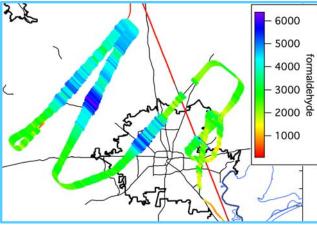

- Modeled plume direction agrees with measurements
- NOx concentrations consistent with observations near ship channel and downwind



Preliminary Results from September 18, 2013 Simulation: Plume O₃

- O₃ titration at ship channel consistent with measurements
- O₃ production downwind qualitatively consistent with measurements





Preliminary Results from September 18, 2013 Simulation: Plume HCHO

 Modeled HCHO behavior consistent with measurements: HCHO levels initially increase and then decrease at the furthest downwind transect

ENVIRON

RAMBOLL

Annual Workshop Pickle Research Campus University of Texas, Austin June 17 - 18, 2015

Project 14-026

Quantifying ozone production from light alkenes using novel measurements of hydroxynitrate reaction products in Houston during the NASA SEAC⁴RS project

Summary:

- Hydroxynitrates provide useful tracers of photochemical products from alkene oxidation including O₃ and aldehydes
- The rapid atmospheric loss of the hydroxynitrates (and the aldehydes) compared to O_3 complicates the analysis
- Modeling will provide an indispensible complement to the observational analysis
- Preliminary modeling results are encouraging

RAMBOLL ENVIRON

Annual Workshop Pickle Research Campus University of Texas, Austin June 17 - 18, 2015

Project 14-026

Quantifying ozone production from light alkenes using novel measurements of hydroxynitrate reaction products in Houston during the NASA SEAC⁴RS project

Work to be done:

- Complete analysis of observations from all 11 SEAC⁴RS flights that sampled Ship Channel plumes to get as complete a picture as possible of production and loss of hydroxynitrates, aldehydes and O₃
- Complete modeling of 18 September and other selected flights

