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Project 14-025 - Development and Evaluation of an 
Interactive Sub-Grid Cloud Framework for the 

CAMx Photochemical Model 
  

Today: 

• Summarize convective processes and model limitations 

• Project objectives 

• Introduce EPA’s convection updates in the Weather Research and 
Forecasting (WRF) meteorological model 

• Summarize the new CAMx convective model framework – Cloud in 
Grid (CiG) 

• Summarize evaluation of WRF + CAMx/CiG to date 

• Discuss project status and next steps 
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Importance of convection for atmospheric processes 

Example of scattered shallow and deep convection 
over Texas 

Meteorology 

• Boundary layer mixing and 
ventilation 

• Deep transport of heat and 
moisture 

• Radiative transfer and 
surface energy budgets 

• Precipitation patterns 
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• Daily convective cloudiness and rainfall is common during the ozone 
season 

• Clouds are often small scale, but ubiquity and abundance are 
important for vertical exchange, chemical processing, and wet removal  



A typical summer afternoon with scattered shallow 
cumulus over Texas 

Air quality 

• Boundary layer mixing and 
ventilation 

• Deep vertical transport of 
chemical tracers 

• Radiative transfer and 
photolysis rates 

• Aqueous chemistry 

• Patterns and intensity of 
wet scavenging 

• Certain environmentally-
sensitive emission sectors 
(e.g., biogenics) 
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Importance of convection for atmospheric processes 



Meteorological models 

• Most clouds are not explicitly resolved by model grid scales 
• “Sub-grid” clouds /convection (SGC) 
• Develop and propagate via stochastic processes 
• Physical effects are difficult to characterize accurately 

• Sub-grid parameterizations adjust grid-resolved vertical 
profiles of heat and moisture 

• Typically ignore other effects; e.g, radiative transfer  
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Modeling limitations 



Off-line photochemical grid models (PGM) 

• Met models do not export SGC data 

• SGC must be re-diagnosed 

• Effects of SGC are addressed to varying degrees 

• Potentially large inconsistencies between models 

• CAMx implicitly treats effects of SGC at grid scale 

• Diagnoses from resolved met model output 

• Blends SGC properties into the resolved cloud fields 

• Applies total cloud fields to photolysis rates, aqueous 
chemistry, and wet scavenging at grid scale 

• No cloud convective mixing treatment 
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Modeling limitations 



• Comparing CAMx NOy profiles 
against aircraft and satellite 
data (Kemball-Cook et al., 
2012; 2013, 2014): 

• Large underestimates above 
8 km 

• Add NOx sources aloft 
(aircraft, lightning) and set 
arbitrary top BC’s 

• Add explicit top BC’s from 
global models 

• These improve average profiles 
over large areas 

• Convective mixing is important 
at local scales 
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Modeling limitations 



• Add sub-grid convective module to CAMx 

• Vertical transport 

• Aqueous chemistry 

• Wet deposition 

• Tie into recent EPA/NREL updates to WRF convection (KF) 

• Add KF cloud information to WRF output files 

• Consistent cloud systems among WRF and CAMx 

• Test for two aircraft field study episodes: 

• September 2013 Houston DISCOVER-AQ (Pickering et al., 
2013) 

• Spring 2008 START08 (Pan et al., 2010) 
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Project 14-025: Objectives 



EPA’s WRF updates to convection (Alapaty et al, 2012; 2014) 

• 2012: Link WRF KF 
cumulus scheme to WRF 
radiation scheme (RadKF) 

• RadKF shades ground: 
reduces convective PE 
and rain 

• 2014: Generalize RadKF to 
multi-scale (MSKF) 

• MSKF generates more 
SGC: more shading, 
less rain 
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• CiG defines a multi-layer cloud volume per grid column according to 
WRF KF output 

• Stationary steady-state SGC environment between met updates 
(e.g., 1 hour) 

• Grid-scale pollutant profiles are split to cloud and ambient volumes 

• Convective transport uses a first-order upstream approach 

• Solves transport for a matrix of air mass tracer per grid column 

• Tracer matrix is algebraically applied to pollutant profiles 

• Aqueous chemistry and wet scavenging separately processed on in-
cloud and ambient profiles 

• Cloud/ambient profiles are linearly combined to yield final profiles 

• Rigorously checked to ensure mass conservation 
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CAMx Cloud-in-Grid (CiG) framework 



Schematic of CAMx CiG 
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• Compensating vertical 
motion (Fa) in ambient air 
is a function of –(E,D) and 
cloud fractional area (fc) 



DISCOVER-AQ 

• September 1-6, 2013: convective period in Houston 
and Gulf Coast area 

• NASA P-3 flights during September 4 & 6, boundary 
layer spirals 

• O3: 20-40 ppb surface to 60 ppb aloft 

• NOy: 0-5 ppb NOx + 1-5+ ppb NOz 
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DISCOVER-AQ: September 4, 2013 

• RadKF (WRF v3.6.1) and MSKF (WRF v3.7) 
lead to very different cloud patterns 

• And different wind, temperature, 
humidity patterns 

• Purely a result of MSKF?  Or other 
changes in WRF v3.7? 

• MSKF seems to be a better simulation – 
serendipitous? 
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Resolved + RadKF Clouds 

Resolved + MSKF Clouds 

12 km CAMx grid 



DISCOVER-AQ: September 4, 2013 

• NO2 vertical transport from surface to free 
troposphere (MSKF meteorology) 

• Reductions near surface, increases aloft 

• Agrees with conceptual model for 
surface sources 

• Patterns reflect local net influence of 
up/downdrafts among clouds and 
ambient volumes 

• O3 is more complicated; inverted gradient 
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SOCAT08 

• May 4-6, 2008: convective period in south-central 
US 

• NCAR G-V flights during May 6, tropospheric profiles 
up/downwind of convective activity 
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• O3: ~50 ppb surface to ~150 
ppb 12 km 

• NOy: 0-2 ppb NOx + 1-3+ 
ppb NOz 



SOCAT08: May 6, 2008 

• WRF produces organized convection 
with appropriate structures 

• But spatially displaced, not enough in 
the area sampled by aircraft 

• CAMx profiles collocated with aircraft 
ascents/descents tend to show little 
effect from convection 

• Lack of model-simulated 
convection rather than deficiency 
in CAMx CIG 

• Shift focus to qualitative assessment 
against aircraft observations in nearby 
locations and similar times 
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Summary: 

• Convection is locally important for pollutant ventilation, 
transport and removal, but is difficult to model 

• New CAMx/CiG framework includes sub-scale vertical 
transport and wet removal of gases & PM, plus in-cloud PM 
chemistry 

• CiG is operating as designed, but model-measurement 
comparisons are hindered by WRF’s SGC predictions 
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Work to be done in this project: 

• Complete CAMx/CiG ozone/precursor evaluation for May 
2008 START08 and September 2013 DISCOVER-AQ periods 
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Future steps: 

• Evaluate impacts to PM, deposition 

• Tie in Probing Tools (SA, DDM, RTRAC) 



DISCOVER-AQ (extra slides) 

• Model vs. aircraft ozone profiles 

• September 6, 2013 (TAMU runs) 

19 



DISCOVER-AQ (extra slides) 

• Ozone difference (MSKF – RadKF) 

• 2 PM September 4, 2013 (same as slide 14) 
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