Analysis of Ozone Formation Sensitivity in Houston Using the Data Collected during DISCOVER-AQ Gina Mazzuca¹, Chris Loughner^{1,2}, and Xinrong Ren^{1,3}

> ¹Univ. of Maryland ²NASA Goddard ³NOAA Air Resources Lab

Project 14-020 January 31st, 2015 – September 30th 2015

Motivation

- To investigate the spatial and temporal variations of ozone production and its sensitivity to NO_x and VOCs.
- To provide scientific information for policy-makers to develop a non-uniform emission reduction strategy for O₃ pollution control.

DISCOVER-AQ provided great data sets to look into this!

Box Model Simulations

• Mechanism:

CB05: Carbon Bond Chemical Mechanism

(Yarwood et al., Report to US EPA, 2005)

-- 51 chemical species and 156 reactions

-- Updated chemistry for higher aldehydes, internal olefins, organic peroxides, and methylperoxy radical

- Model input: the P-3B observations (1-min merge file):
 - -- Inorganic species: O₃, NO, NO₂, CO, SO₂,
 - -- VOC species: HCHO, PTR-TOF (isoprene, terpenes, and aromatics), and CMAQ-calculated alkanes/alkenes
 - -- J values: calculated with the TUV model and scaled to measured $J(NO_2)$
 - -- Meteorological parameters: T, P, and RH
- Model output

steady state OH, HO_2 , RO_2 and other intermediates

• Modeling period: nine P-3B flights

Alkanes/Alkenes Input for the Box Model

CMAQ-calculated alkanes and alkenes (not measured on the P-3B) were used to constrain the box model, including:

- PAR: Paraffin carbon bond (C-C)
- ETHA: Ethane
- ETH: Ethene
- OLE: Terminal olefin carbon bond (R-C=C)
- IOLE: Internal olefin carbon bond (R-C=C-R)

Toluene-scaled alkanes and alkenes based on SHARP on Moody Tower:

 $[PAR] = 73.6 \times [Toluene]$

[ETHA] = 9.28 x [Toluene]

[ETH] = 2.34 x [Toluene]

[OLE] = 1.84 x [Toluene]

[IOLE] = 0.218 x [Toluene]

Alkanes/Alkenes Input for the Box Model

- Good agreement between CMAQ-calculated and toluene-scaled VOCs
- We will conduct sensitivity analysis to assess the uncertainty.

Photochemical P(O₃) Calculation

NO_x - O_3 photo-stationary state (1) $NO_2 + hv \rightarrow NO + O(^3P)$ (2) $O(^3P) + O_2 \rightarrow O_3$ (3) $O_3 + NO \rightarrow NO_2 + O_2$ No net O₃ is produced. (4) $HO_2 + NO \rightarrow NO_2 + OH$ (5) $RO_2 + NO \rightarrow \alpha NO_2 + RO$ Net O_3 is produced. $P(O_3) = k_{NO+HO2} [NO][HO_2] + \sum \alpha_i k_{NO+RO2i} [NO][RO_{2i}]$ α_i : NO₂ yield in RO_{2i}+ NO

 $L(O_{3}) = k_{OH+NO2+M} [OH][NO_{2}][M] + k_{O1D+H2O}[O(^{1}D)][H_{2}O]$ + $k_{HO2+O3} [O_{3}][HO_{2}] + k_{OH+O3}[O_{3}][OH] + \sum k_{O3+VOCi} [O_{3}][VOC_{i}]$

Net photochemical $P(O_3)$: $P(O_3)_{net} = P(O_3) - L(O_3)$

P(O₃) Sensitivity to NO_x and VOCs

- L_N: Radical loss due to NOx
- Q: Total primary radical production
- L_N/Q : the fraction of radical loss due to NOx
- L_N/Q > 0.5: VOC-sensitive
- L_N/Q < 0.5: NOx-sensitive

(Kleinman, Atmos. Environ., 2005)

$$\frac{d \ln P(O_3)}{d \ln [NO_x]} = \frac{(1 - 3/2 L_N/Q)}{(1 - 1/2 L_N/Q)},$$
$$\frac{d \ln P(O_3)}{d \ln (VOC_R)} = \frac{1/2 L_N/Q}{(1 - 1/2 L_N/Q)}$$

$$P(O_3) = KQ^{C1}[NO_x]^{C2}(VOC_R)^{C3}$$

Spatial variations of net P(O₃)

Diurnal variation of net P(O₃)

• High $P(O_3)$ mainly with $L_N/Q > 0.5$ (i.e., VOC sensitive)

• A broad peak in the morning, with significant $P(O_3)$ in the afternoon

Vertical profiles of P(O₃), L(O₃), and net P(O₃)

- $P(O_3)$: RO_2 + NO makes about the same O_3 as HO_2 +NO in the model.
- $L(O_3)$: O_3 photolysis followed by $O(^1D)+H_2O$ is a dominant photochemical ozone loss .
- Net P(O₃): maximum near the surface

- [NO] < ~1 ppbv: P(O₃) increases as [NO] increases
- [NO] > ~1ppbv: P(O₃) levels off as [NO] further increases
- Higher $P(HOx) \rightarrow higher P(O_3)$

P(O₃) sensitivity to NOx and VOCs

- $P(O_3)$ towards more VOC sensitive in the early morning and then towards more NOx sensitive later the day.
- High $P(O_3)$ in the morning with VOC sensitive
- There are spots/times with VOC sensitive in the afternoon.

Sensitivity of P(O₃) in Some Ground-based Studies

• Similar trends in airborne and ground-based studies in Houston, except in the afternoon.

- Houston and Mexico City are similar, both having large VOC levels.
- P(O₃) in New York City (NYC) was exclusively VOC sensitive.

P(O₃) and Its Sensitivity at Spiral Locations

Net P(O₃) at 8 Spiral Sites below 1000 m

• Deer Park, Moody Tower and Channel View: $P(O_3) > 10$ ppb hr⁻¹ on average

• Galveston, Smith Point, and Conroe: $P(O_3) < 10$ ppb hr⁻¹ on average

L_N/Q at 8 Spiral Sites below 1000 m

- At Dear Park: $P(O_3)$ is mostly VOC sensitive for the entire day.
- At Moody Tower and Channel View: $P(O_3)$ is VOC sensitive or in the transit regime.
- At Smith Point and Conroe: $P(O_3)$ is mostly NOx sensitive for the entire day. ¹⁹

Summary

P(O₃) in Houston:

- Averages below 500 m: 20-30 ppb/hr in the morning
 5-10 ppb/hr in the afternoon
- Increases as [NO] increases up to 1 ppbv and then levels off.
- Hot spots in Houston Ship Channel and Galveston Bay

P(O₃) sensitivity : temporally & spatially variable

- Tends to be more VOC sensitive in the morning with high $P(O_3)$ —control of VOC is a way to effectively control O_3 .
- Generally NOx sensitive in the afternoon with spatial variations

On-going work

- CMAQ process analysis on P(O₃) and comparison with box model
- Investigate ozone production efficiency at different locations at different times of day
- Sensitivity analysis of the use of CMAQ-calculated alkanes and alkenes to constrain the box model
- Compare modeled P(O₃) with measured P(O₃) at the Moody Tower site

Acknowledgements

- AQRP/TCEQ for funding
- DISCOVER-AQ Science Team for the use of the measurements in this study