Nitrogen Oxide Emissions Constrained by Space-based Observations of NO₂ Columns

> University of Houston Yunsoo Choi, Pl Amir Hossein Souri, Lijun Diao and Xiangshang Li

Introduction

- NO_x Sources
 - Fuel combustion (mobile, power plants and etc.)
 - Biomass burning
 - Lightening
 - Microbial processes in soil amplified by fertilizers, rain and burning
- NO_x Roles
 - Ozone production
 - Effect on the global climate indirectly by perturbing greenhouse gases
 - Adverse health effects
 - A precursor for ammonium nitrate, an important PM
 - Acidification and eutrophication of soils and surface waters

Introduction
Data
Methodology
Results
Conclusion

Introduction

• 'Bottom-up'' inventories

- Fuel
- Land use statistics
- In-tunnel measurements of NO_x emission
- Agricultural data
- Estimates of burned areas
- Labor-intensive and expensive
- Done every 3 years in U.S.
- Have high uncertainty (e.g., ~50% for NEI-2005)
- Very soon become obsolete

Long-term NO₂ trends

• A large and continuous decline in CAMS NO₂ levels during 2000-2014.

Choi, Souri, Diao and Li

Long-term NO₂ trends

• A continuous decline in OMI NO₂ levels during 2005-2014.

Choi, Souri, Diao and Li

Introduction

- "Top-down" approach
 - Satellite observations (y)
 - Emissions (x)
 - A Jacobian matrix (K) from a forward model

 $\mathbf{y} = \mathbf{K}\mathbf{x}$

- When a physical quantity is not directly accessible for measurement, it is common to proceed by observing other quantities that are connected with it by physical laws.
- The notion of an inverse problem corresponds to the idea of inverting these physical laws to gain indirect access to the quantity.

Research objective

• Quantify the posteriori NO_x emissions from a priori emissions (e.g., point, area, mobile, and soil sources) using an inverse method with tropospheric OMI NO₂ columns.

- Use high spatial resolution of OMI NO₂
- Improve WRF-CMAQ simulation using objective analysis
- Utilize the Bayesian framework for inverse modeling
- Evaluate the adjusted emissions with aircraft and ground-based observations.

Data: in-situ surface

• CAMS for surface ozone and NO_x data

Surface ozone

Choi, Souri, Diao and Li

Data: Aircraft and emission

• Aircraft measurements (various gases including ozone and NO_x) (10 flights in September 2013)

• NO_x emission inventories from four different sources (area, mobile, biogenic and point) based on NEI-2011

Choi, Souri, Diao and Li

Data: remote sensing

- Satellite tropospheric OMI NO₂ column.
 - Noisy pixels filtered out based on cloud fraction, RMSE in the retrieval, VCD quality and etc.
 - OMI footprint is larger in pixels far from nadir. A remedy is to use splines to correct geometric distortions based on Kuhlmann et al. (2014)

Choi, Souri, Diao and Li

Data: remote sensing

- The influences of priori NO₂ profiles removed by using Air Mass Factor in each granule and model simulation (e.g., Choi et al., 2008; Duncan et al., 2014).
- Without this adjustment, OMI shows underprediction and overprediction in urban and rural areas respectively.

Choi, Souri, Diao and Li

Method: Inverse modeling

• Inverse modeling:

$$\mathbf{y} = \mathbf{K}\mathbf{x} + \mathbf{\varepsilon}_{\Sigma}$$

- For well-conditioned linear problems, under the assumption of independent and normally distributed data errors, least-squares (maximum likelihood principle) can be used.
- The Bayesian approach
 - Random variables
 - The approach can naturally use a priori

Bayesian method

$$\mathbf{y} = \mathbf{K}\mathbf{x} + \mathbf{\varepsilon}_{\Sigma}$$
Introduction
$$J(\mathbf{x}) = (\mathbf{y} - \mathbf{K}\mathbf{x})^{\mathrm{T}}\mathbf{S}_{\Sigma}^{-1}(\mathbf{y} - \mathbf{K}\mathbf{x}) + (\mathbf{x} - \mathbf{x}_{a})^{\mathrm{T}}\mathbf{S}_{a}^{-1}(\mathbf{x} - \mathbf{x}_{a})$$

$$\hat{\mathbf{x}} = \mathbf{x}_{a} + \mathbf{S}_{a}\mathbf{K}^{\mathrm{T}}(\mathbf{K}\mathbf{S}_{a}\mathbf{K}^{\mathrm{T}} + \mathbf{S}_{\Sigma})^{-1}(\mathbf{y} - \mathbf{K}\mathbf{x}_{a})$$

$$\hat{\mathbf{S}}^{-1} = \mathbf{K}^{\mathrm{T}}\mathbf{S}_{\Sigma}^{-1}\mathbf{K} + \mathbf{S}_{a}^{-1}$$
Introduction
$$Conclusion$$

- Model (CMAQ or CAMx) determines, $K = dNO_2/dE_NO_x$
- A posteriori x is determined at last

Choi, Souri, Diao and Li

CMAQ overpredicted NO_2 in urban regions and underpredicted in rural ones, which is similar to those by Choi et al. (2012) and Choi (2014)

Choi, Souri, Diao and Li

Results

Overall, all the anthropogenic NO_x emissions reduced, while biogenic emissions increased. Both reduction and enhancement not occurred evenly over the domain.

Choi, Souri, Diao and Li

Results

• Total NO_x emission overview:

Choi, Souri, Diao and Li

Comparison to OMI NO₂ columns

×10¹⁵ 5

3

2

Choi, Souri, Diao and Li

Comparison to CAMS NO_x values in morning time (06-12 LT) of Sep 2013 (before and after inverse modeling)

-93

Choi, Souri, Diao and Li

Results

Time series of CAMS NO_x before (upper) and after (lower) adjusting emissions:

09/01 09/02 09/03 09/04 09/05 09/06 09/07 09/08 09/09 09/10 09/11 09/12 09/13 09/14 09/15 09/16 09/17 09/18 09/19 09/20 09/21 09/22 09/23 09/24 09/25 09/26 09/27 09/28 09/29 09/30

Results

- RMSE and bias between aircraft NO_x and simulated ones are 2.4 and 6.0ppbv for NEI2011 (left) and 1.9 and 4.1ppbv for adjusted NEI-2011 (right).
- A snapshot for Sep. 24th

Conclusion and following works

- CMAQ using NEI-2011 showed NO₂ overprediciton in urban areas and undeprediction in rural areas.
- Evidence to show that tropospheric OMI NO₂ can be used to constrain the emission.
- Anthropogenic emissions reduced after the update, but biogenic emission increased.
- The bias between observations and simulated NO_x decreased after the emission is updated.
- Following works:
 - Inverse modeling for biomass burning (e.g., FINN, GFED or QFED) and HCHO (a proxy for VOC)

Introduction

Data

Methodology

Results

Conclusion

Thanks for your attention