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Introduction 
 
• NOx Sources 

• Fuel combustion (mobile, power plants and etc.) 
• Biomass burning 
• Lightening 
• Microbial processes in soil amplified by fertilizers, rain and 

burning 
• NOx Roles 

• Ozone production 
• Effect on the global climate indirectly by perturbing greenhouse 

gases 
• Adverse health effects 
• A precursor for ammonium nitrate, an important PM 
• Acidification and eutrophication of soils and surface waters 
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Introduction 

• ‘Bottom-up’’ inventories 
• Fuel 
• Land use statistics 
• In-tunnel measurements of NOx emission 
• Agricultural data 
• Estimates of burned areas 

 
• Labor-intensive and expensive 
• Done every 3 years in U.S. 
• Have high uncertainty (e.g., ~50% for NEI-2005) 
• Very soon become obsolete  
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Long-term NO2 trends 
• A large and continuous decline in CAMS NO2 levels during 2000-2014. 
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Long-term NO2 trends 

• A continuous decline in OMI NO2 levels during 2005-2014. 

Trend analysis 
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Introduction 

• “Top-down” approach 
• Satellite observations (y) 
• Emissions (x) 
• A Jacobian matrix (K) from a forward model  

 
 

• When a physical quantity is not directly accessible for 
measurement, it is common to proceed by observing other  
quantities that are connected with it by physical laws. 

• The notion of an inverse problem corresponds to the idea of 
inverting these physical laws to gain indirect access to the 
quantity. 
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Research objective 

• Quantify the posteriori NOx emissions from a priori emissions 
(e.g., point, area, mobile, and soil sources) using an inverse 
method with tropospheric OMI NO2 columns. 
 

 
• Use high spatial resolution of OMI NO2  
• Improve WRF-CMAQ simulation using objective 

analysis 
• Utilize the Bayesian framework for inverse modeling 
• Evaluate the adjusted emissions with aircraft and 

ground-based observations.  
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Data: in-situ surface 

• CAMS for surface ozone and NOx data 
 
 
 
 
 
 
 
 
 
 

            Surface ozone                                      NOx 
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Data: Aircraft and emission 

• Aircraft measurements (various gases including ozone and NOx) 
(10 flights in September 2013) 
 
 
 
 
 
 
 
 

• NOx emission inventories from four different sources (area, 
mobile, biogenic and point) based on NEI-2011 
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Data: remote sensing 

•  Satellite tropospheric OMI NO2 column. 
• Noisy pixels filtered out based on cloud fraction, 

RMSE in the retrieval, VCD quality and etc. 
• OMI footprint is larger in pixels far from nadir. A 

remedy is  to use splines to correct geometric 
distortions based on Kuhlmann et al. (2014) 
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Data: remote sensing 

• The influences of priori NO2 profiles removed by using 
Air Mass Factor in each granule and model simulation 
(e.g., Choi et al., 2008; Duncan et al., 2014).  

• Without this adjustment, OMI shows underprediction 
and overprediction in urban and rural areas 
respectively. 
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Method: Inverse modeling 
 

• Inverse modeling: 
 
 
 
 

• For well-conditioned linear problems, under the assumption of 
independent and normally distributed data errors, least-squares 
(maximum likelihood principle) can be used. 
 

• The Bayesian approach 
• Random variables 
• The approach can naturally use a priori  

 
•   
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Bayesian method 

 
 
 
 
 
 
 
 
 
 

• Model (CMAQ or CAMx) determines, K = dNO2/dE_NOx  
• A posteriori x is determined at last     
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Results 
 CMAQ overpredicted NO2 in urban regions and underpredicted in rural ones, 
which is similar to those by Choi et al. (2012) and Choi (2014) 
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Results 
 Overall, all the anthropogenic NOx emissions reduced, while biogenic 
emissions increased. Both reduction and enhancement not occurred evenly 
over the domain. 
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Results 
 

• Total NOx emission overview: 
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Results 

 Comparison to OMI NO2 columns 
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Results 

 Comparison to CAMS NOx values in morning time (06-12 LT) 
of Sep 2013 (before and after inverse modeling) 
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Results 

 Time series of CAMS NOx before (upper) and after (lower) 
adjusting emissions: 
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Results 

• RMSE and bias between aircraft NOx and simulated ones are 
2.4 and 6.0ppbv for NEI2011 (left) and 1.9 and 4.1ppbv for 
adjusted NEI-2011 (right). 

• A snapshot for Sep. 24th 
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Conclusion and following works 
• CMAQ using NEI-2011 showed NO2 overprediciton in urban 

areas and undeprediction in rural areas. 
 

• Evidence to show that tropospheric OMI NO2 can be used to 
constrain the emission. 

 
• Anthropogenic emissions reduced after the update, but 

biogenic emission increased. 
 

• The bias between observations and simulated NOx decreased 
after the emission is updated. 
 

• Following works: 
• Inverse modeling for biomass burning (e.g., FINN, 

GFED or QFED) and HCHO (a proxy for VOC) 
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