Impact of large-scale circulation patterns on surface ozone concentrations in Houston-Galveston-Brazoria (HGB)

Yuxuan Wang, Beixi Jia

Dept. of Marine Sciences, Texas A&M University at Galveston Dept. of Atmospheric Sciences, Texas A&M University

17 June 2015

Large interannual variability in HGB O₃

Number of Days 8-hr Ozone Daily Max > 0.075 ppm

2000-2015 in Houston-Sugar Land-Baytown, TX

Note: Based on ALL sites Source: U.S. EPA AirData http://www.epa.gov/airdata Generated: January 18, 2015

www.epa.gov/airdata/ad_viz_ozcompare.html

Large-scale circulation patterns

Project Objectives

Motivating Hypothesis:

Large-scale circulation pattern, particularly the Bermuda High (BH), is the key driver for MDA8 O_3 variability in HGB during the ozone season

Objectives/Tasks:

- 1. Characterize the influence of BH on HGB O₃
- 2. Develop the statistical relationship between O_3 and BH
- 3. Apply the statistical relationship to correct background ozone bias in GEOS-Chem global model

Project Period: 01/26/2015 ~ 09/31/2015

Primary Indicators of the Bermuda High

- Bermuda High Index (BHI): based on intensity. Mean pressure difference between the Gulf of Mexico and a representative continental location (unit: hPa)
- BH west edge longitude (BH-Lon): based on position. The cross point of the 1560-gpm isoline and the 850 hPa wind ridge line (unit: degree longitude)

BH-Lon explains the seasonality of HGB O₃

850hPa geopotential height (gpm) and wind fields(m/s)

Refine BH-Lon to better predict HGB O₃

- Li et al. (2011) used a constant isoline (1560-gpm) to define BH-Lon for all the months
- To account for the seasonality of BH, we tested a number of isoline choices to define BH-Lon
- Our best-choice of BH-Lon definition (in terms of correlations with HGB O₃)
 - > Jun and July: 1560-gpm isoline
 - ➤ Aug: 1556-gpm isoline
 - > Sep : 1536-gpm isoline
- Tested and compared BH-Lon from a number of reanalysis products (NCEP, MERRA, NA Regional Reanalysis)

BH-Lon and monthly O₃ (detrended data)

BH-Lon was detrended by subtracting a linear trend

Refine the BH Intensity index (BHI)

- BHI is conventionally defined as the SLP differences between two representative locations
- *Zhu and Liang* (2013) defined BHI as the SLP difference between Gulf of Mexico and southern Great Plains (box 1 and 2) → BHI1
- We proposed a new BHI as the SLP difference between Gulf of Mexico and Northeast TX (box 1 and 3) → BHI2

9

Other Meteorological Indices

- Palmer Drought Severity Index (PDSI)
- HGB-mean temperature
- ENSO
- Artic Oscillation (AO)

Tested different metrics of HGB O₃: mean, median, background ozone, ozone enhancement

Develop the statistical relationship through multiple linear regression (MLR)

$$y = \sum_{i=1}^{6} \beta_{i} x_{i} (+ interaction \ terms)$$

y (dependent variable): monthly-mean MDA8 O_3 (detrended and normalized) x_i (independent variables): BH-Lon, BHI1, BHI2, AO, PDSI, Temperature (all detrended and normalized)

Approaches

- (1) Stepwise regression to select variables: terms are added and deleted based on Akaike Information Criterion (AIC)
- (2) Collinearity between predictors: variance inflation factor (VIF)
- (3) Validation

Best-fit MLR model from stepwise regression

Predictors Selection

Selected Predictors

June:BH-Lon, BHI2, HGB-mean temperatureJuly:BH-LonAugust:BH-Lon, BHI1, BHI2, PDSISeptember:BH-Lon, BHI2, AO

Cross-validation of MLR model

MLR model prediction of O₃

15

MLR model validation results

Mean bias (ppbv and %)

	Jun	Jul	Aug	Sep
3-year moving average	3.2 (5.0)	1.5 (2.0)	0.3 (0.3)	0.2 (0.3)
Linear trend	4.8 (12.3)	6.9 (8.9)	1.2 (1.4)	9.7 (10.5)

Direction of changes

	Jun		Jul		Aug		Sep	
	first	last	first	last	first	last	first	last
3-year moving average	х	\checkmark	X	\checkmark	\checkmark	X	\checkmark	\checkmark
Linear trend	\checkmark	х						

Comparison with other studies

Future Direction: explore daily scale variability

GEOS-Chem model simulation (Jun 2004-2012)

Year-to-year change in meteorology (GEOS-5) and emissions (NEI); Model resolution 0.5° x0.667°

GEOS-Chem model evaluation

GEOS-Chem model evaluation

Progress Summary

Motivating Hypothesis (confirmed)

Large-scale circulation pattern, particularly the Bermuda High (BH), is the key driver for MDA8 O_3 variability in HGB during the ozone season

Deliverables:

- 1. A number of indicators to characterize the influence of large-scale circulation and BH on HGB O₃ on monthly scale
- 2. Calibrated and validated MLR model

In progress:

Bias correct scheme for background ozone in GEOS-Chem global model

Acknowledgement

- Funding: Texas AQRP
- Graduate Students: Yuanyu Xie, Jiaxi Hu
- Mark Estes (TCEQ)

- BHI1 = SLP1-SLP2
- BHI2 = SLP1-SLP3
- BHI1 and BHI2 are positively correlated.


```
Correlations:
BH-Lon and BHI1: -0.36
BH-Lon and BHI2: -0.46
BHI1 and BHI2: 0.89
```

In June, BHI2 is mostly positive (SLP1>SLP3). In September, BHI2 is mostly negative (SLP1<SLP3).