Improved Analysis of VOC, NO₂, SO₂ and HCHO Data from SOF, Mobile DOAS and MW-DOAS during DISCOVER-AQ

John Johansson, Johan Mellqvist, Barry Lefer, Laura Judd

john.johansson@chalmers.se Department of Earth and Space Sciences Chalmers University of Technology

Department of Earth and Atmospheric Sciences University of Houston

• •

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

AQRP workshop, 18 June 2015

The SOF platform

SOF Mobile lab:

DISCOVER-AQ Data Analysis: DISCOVER-AQ (2/30)

Flux measurements

Principle of measurements:

DISCOVER-AQ Data Analysis: DISCOVER-AQ (3/30)

Propene transect

Example measurement:

Miller Cutoff Rd 25 Sep: ~150 kg/h

CHALMERS

Comparison to inventories and previous campaigns:

Area	Species	2006	2009	2011	2013	EI 2011
HSC	Ethene	878 ± 152	614 ± 284	612 ± 168	474.9 ± 79.3	53
	Propene	1511 ± 529	642 ± 108	$563 \pm 294*$	394 ± 245	63
	Alkanes	$12276 \pm$	$10522 \pm$	$11569 \pm$	13934 ± 4321	894
		3491	2032	2598		
	SO ₂	2277 ± 1056	3364 ± 821	2329 ± 466	1955 ± 376	1228
	NO ₂	2460 ± 885	-	1830 ± 330	2117 ± 672	1103
Mont	Ethene	443 ± 139	444 ± 174	545 ± 284	271 ± 33	47
Belvieu	Propene	489 ± 231	303 ± 189	58*	220 ± 115	25
	Alkanes	874	1575 ± 704	1319 ± 280	$2854 \pm 1212^{**}$	127
	NO ₂	-	168 ± 39	305 ± 29	261 ± 91	155
Texas City	Ethene	83 ± 12	122 ± 41	177 ± 48	-	2
	Propene	ND	54 ± 22	$56 \pm 9*$	-	6
	Alkanes	3010 ± 572	2422 ± 288	2342 ± 805	1340 ± 140	242
	SO ₂	-	834 ± 298	1285 ± 428	442 ± 134	109
	NO ₂	460 ± 150	283 ± 30	492 ± 71	371 ± 55	352

Measurement routes

Coordinated with airborne DISCOVER-AQ measurements:

DISCOVER-AQ Data Analysis: DISCOVER-AQ (6/30)

Measurement days

- Few good measurement days
- Trade-off between goals
- Less emission data than previous studies

CHALMERS

Date	DISCOVER- AQ flight day	Independent SOF day	Weather conditions
Sep 3		Х	Moderate
Sep 4	Х		Poor
Sep 6	Х		Poor
Sep 8		X (afternoon)	Moderate
Sep 9		Х	Moderate
Sep 10		Х	Poor
Sep 11	Х		Moderate
Sep 12	Х		Moderate/good
Sep 13	Х		Moderate/poor
Sep 14	Х		Poor
Sep 15		Х	Poor
Sep 16		Х	Poor
Sep 18		Х	Moderate
Sep 22		Х	Moderate
Sep 23		X (afternoon)	Moderate
Sep 24	Х		Moderate/good
Sep 25	Х		Good
Sep 26	Х		Good
Sep 27	Х		Poor
Sep 28		Х	Poor

DISCOVER-AQ Data Analysis: DISCOVER-AQ (7/30)

Measurement days

- Few good measurement days
- Trade-off between goals
- Less emission data than previous studies

Date	DISCOVER- AQ flight day	Independent SOF day	Weather conditions
Sep 3		Х	Moderate
Sep 4	Х		Poor
Sep 6	Х		Poor
Sep 8		X (afternoon)	Moderate
Sep 9		Х	Moderate
Sep 10		Х	Poor
Sep 11	Х		Moderate
Sep 12	Х		Moderate/good
Sep 13	Х		Moderate/poor
Sep 14	х		Poor
Sep 15		Х	Poor
Sep 16		Х	Poor
Sep 18		Х	Moderate
Sep 22		Х	Moderate
Sep 23		X (afternoon)	Moderate
Sep 24	Х		Moderate/good
Sep 25	Х		Good
Sep 26	Х		Good
Sep 27	Х		Poor
Sep 28		Х	Poor

CHALMERS

Measurement days

- Few good measurement days
- Trade-off between goals
- Less emission data than previous studies

CHALMERS

Date	DISCOVER- AQ flight day	Independent SOF day	Weather conditions
Sep 3		Х	Moderate
Sep 4	х		Poor
Sep 6	Х		Poor
Sep 8		X (afternoon)	Moderate
Sep 9		Х	Moderate
Sep 10		Х	Poor
Sep 11	Х		Moderate
Sep 12	Х		Moderate/good
Sep 13	Х		Moderate/poor
Sep 14	Х		Poor
Sep 15		Х	Poor
Sep 16		Х	Poor
Sep 18		Х	Moderate
Sep 22		Х	Moderate
Sep 23		X (afternoon)	Moderate
Sep 24	Х		Moderate/good
Sep 25	Х		Good
Sep 26	Х		Good
Sep 27	Х		Poor
Sep 28		Х	Poor

DISCOVER-AQ Data Analysis: DISCOVER-AQ (7/30)

MW-DOAS

Used to quantify aromatic VOC fraction in plumes:

DISCOVER-AQ Data Analysis: DISCOVER-AQ (8/30)

- Compare DOAS columns to DISCOVER-AQ data
 - Requires absolute columns ...
 - ... and long term stable evaluations
- Investigate cloud effects on measurements
- Improve flux estimates and compare to inventories
- Estimate aromatic emissions from industries

- Compare DOAS columns to DISCOVER-AQ data
 - Requires absolute columns ...
 - ... and long term stable evaluations
- Investigate cloud effects on measurements
- Improve flux estimates and compare to inventories
- Estimate aromatic emissions from industries

- Compare DOAS columns to DISCOVER-AQ data
 - Requires absolute columns ...
 - ... and long term stable evaluations
- Investigate cloud effects on measurements
- Improve flux estimates and compare to inventories
- Estimate aromatic emissions from industries

- Compare DOAS columns to DISCOVER-AQ data
 - Requires absolute columns ...
 - ... and long term stable evaluations
- Investigate cloud effects on measurements
- Improve flux estimates and compare to inventories
- Estimate aromatic emissions from industries

- Compare DOAS columns to DISCOVER-AQ data
 - Requires absolute columns ...
 - ... and long term stable evaluations
- Investigate cloud effects on measurements
- Improve flux estimates and compare to inventories
- Estimate aromatic emissions from industries

- Compare DOAS columns to DISCOVER-AQ data
 - Requires absolute columns ...
 - ... and long term stable evaluations
- Investigate cloud effects on measurements
- Improve flux estimates and compare to inventories
- Estimate aromatic emissions from industries

Cloud test measurements

Tests revealed instrumental drift effect. Fitting error (RMS) time series during a test measurement:

DISCOVER-AQ Data Analysis: DISCOVER-AQ (10/30)

Mercury lamp measurements

Small changes in instrument line shape over time:

- Spectral artifacts due to Fraunhofer lines
- Simulated with synthesized spectra
- Pseudo-absorbers derived by principal component analysis

- Spectral artifacts due to Fraunhofer lines
- Simulated with synthesized spectra
- Pseudo-absorbers derived by principal component analysis

CHALMERS

- Spectral artifacts due to Fraunhofer lines
- Simulated with synthesized spectra
- Pseudo-absorbers derived by principal component analysis

Effect on RMS error:

Effect on HCHO columns:

Effect on Ring component:

Cloud test measurements

No effect of clouds on spectral fit quality:

Cloud indicator

Color index $I_{\lambda=324}/I_{\lambda=350}$ for September 25:

DISCOVER-AQ Data Analysis: DISCOVER-AQ (17/30)

Cloud indicator

Color index $I_{\lambda=324}/I_{\lambda=350}$ for September 12:

Cloud indicator

Color index $I_{\lambda=324}/I_{\lambda=350}$ for September 11:

- Every other spectrum 30° off-zenith
- Use the zenith spectra as reference
- Requires radiative transfer modeling

- Every other spectrum 30° off-zenith
- Use the zenith spectra as reference
- Requires radiative transfer modeling

CHALMERS

- Every other spectrum 30° off-zenith
- Use the zenith spectra as reference
- Requires radiative transfer modeling

- Every other spectrum 30° off-zenith
- Use the zenith spectra as reference
- Requires radiative transfer modeling

- Every other spectrum 30° off-zenith
- Use the zenith spectra as reference
- Requires radiative transfer modeling

- Every other spectrum 30° off-zenith
- Use the zenith spectra as reference
- Requires radiative transfer modeling

Using SCIATRAN model and aerosol profiles measured by aircraft:

Assuming horizontal homogeneity:

$$\Delta \text{SCD} = \int \Delta w(z) n(z) dz$$

 $\approx \varDelta \text{AMF}_{\textit{ML}} \cdot \text{VCD}_{\textit{ML}} + \varDelta \text{SCD}_{\textit{U}}$

Mixing layer column given by:

$$\mathrm{VCD}_{ML} = rac{1}{\varDelta\mathrm{AMF}_{ML}} \left(\varDelta\mathrm{SCD} - \varDelta\mathrm{SCD}_U \right)$$

Assuming horizontal homogeneity:

$$\Delta \text{SCD} = \int \Delta w(z) n(z) dz$$

 $\approx \Delta AMF_{ML} \cdot VCD_{ML} + \Delta SCD_U$

Mixing layer column given by:

$$\mathrm{VCD}_{ML} = rac{1}{\varDelta\mathrm{AMF}_{ML}} \left(\varDelta\mathrm{SCD} - \varDelta\mathrm{SCD}_U \right)$$

Assuming horizontal homogeneity:

$$\Delta \text{SCD} = \int \Delta w(z) n(z) dz$$

 $\approx \Delta AMF_{ML} \cdot VCD_{ML} + \Delta SCD_U$

Mixing layer column given by:

$$ext{VCD}_{ML} = rac{1}{ extsf{\Delta} ext{AMF}_{ML}} \left(extsf{\Delta} ext{SCD} - extsf{\Delta} ext{SCD}_U
ight)$$

Vertical column calculation

Angular dependence of ΔAMF_{ML} and ΔSCD_U :

DISCOVER-AQ Data Analysis: DISCOVER-AQ (23/30)

Noisy results due to horizontal inhomogeneity. Used to establish an absolute baseline:

Noisy results due to horizontal inhomogeneity. Used to establish an absolute baseline:

DISCOVER-AQ Data Analysis: DISCOVER-AQ (24/30)

Noisy results due to horizontal inhomogeneity. Used to establish an absolute baseline:

Results for NO₂:

Results for NO₂:

Results for NO₂:

Measurement routes:

DISCOVER-AQ Data Analysis: DISCOVER-AQ (26/30)

Time plots of NO₂ columns at different sites:

CHALMERS

DISCOVER-AQ Data Analysis: DISCOVER-AQ (27/30)

Time plots of NO₂ columns at different sites:

CHALMERS

DISCOVER-AQ Data Analysis: DISCOVER-AQ (27/30)

Time plots of NO₂ columns at different sites:

CHALMERS

DISCOVER-AQ Data Analysis: DISCOVER-AQ (27/30)

Time plots of NO₂ columns at different sites:

CHALMERS

DISCOVER-AQ Data Analysis: DISCOVER-AQ (27/30)

Time plots of HCHO columns at different sites:

CHALMERS

DISCOVER-AQ Data Analysis: DISCOVER-AQ (28/30)

Time plots of HCHO columns at different sites:

CHALMERS

DISCOVER-AQ Data Analysis: DISCOVER-AQ (28/30)

Time plots of HCHO columns at different sites:

DISCOVER-AQ Data Analysis: DISCOVER-AQ (28/30)

MW-DOAS

Measurements of aromatic fraction from Texas City $10\pm4\%$:

DISCOVER-AQ Data Analysis: DISCOVER-AQ (29/30)

- Financed by TCEQ and AQRP
- Barry Lefer, James Flynn and Laura Judd from University of Houston

