AQRP WORKSHOP

Update and evaluation of model algorithms needed to predict Particulate Matter from Isoprene

> William Vizuete Jason Surratt

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Isoprene-Derived Epoxides Promote SOA Formation

Isoprene-Derived Epoxides Are Critical in SOA Formation from Isoprene Oxidation

THE UNIVERSITY

CHAPEL HILI

What is the Reactive Flux to Particles? TH CAROLINA

Model Implementation

Model Implementation

(a) Isoprene [ppb]

(b) IEPOX [ppt]

(c) MAE [ppt]

Epoxide Pathways Improve Model Predictions of Isoprene Markers and Reveal Key Role of Acidity in Aerosol Formation

Havala O. T. Pye,^{*,†} Robert W. Pinder,[†] Ivan R. Piletic,[†] Ying Xie,^{†,‡} Shannon L. Capps,[†] Ying-Hsuan Lin,[¶] Jason D. Surratt,[¶] Zhenfa Zhang,[¶] Avram Gold,[¶] Deborah J. Luecken,[†] William T. Hutzell,[†] Mohammed Jaoui,[§] John H. Offenberg,[†] Tadeusz E. Kleindienst,[†] Michael Lewandowski,[†] and Edward O. Edney[†]

Model Implementation

Modeling regional secondary organic aerosol using the Master Chemical Mechanism

Jingyi Li^a, Meredith Cleveland^b, Luke D. Ziemba^c, Robert J. Griffin^d, Kelley C. Barsanti^e, James F. Pankow^e, Qi Ying^{a,*}

Task 1. Integration of Gas-Phase Epoxide Formation and Subsequent SOA Formation into UNC MORPHO Box Model

Task 2. Synthesis of Isoprene-derived Epoxides and Known SOA Tracers

Task 3. Indoor Chamber Experiments Generating SOA Formation Directly from Isoprene-Derived Epoxides

Task 4. Modeling of Isoprene-derived SOA Formation From Environmental Simulation Chambers

Task 1 – Gas Phase Evaluation

Atmospheric Environment 105 (2015) 109-120

Assessment of SAPRC07 with updated isoprene chemistry against outdoor chamber experiments

Yuzhi Chen, Kenneth G. Sexton, Roger E. Jerry, Jason D. Surratt, William Vizuete*

Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 166 Rosenau Hall CB#7431, Chapel Hill, NC 27599, USA

[Xie et al., 2013, ACP]

Task 1 – Gas Phase Evaluation

UNC dual gas-phase chamber, Pittsboro, NC, 1994

Experimental:

- 16 characterization runs
- 24 isoprene runs
- Compounds measured: O₃, NO, NO₂, Isoprene,CO, HCHO, PAN...

Modeling:

MORPHO (UNC)

<u>High NOx</u>

High NO_X

Lower NO_X

Sources of NO₂

High NOx

Lower NOx

- High NO_X 65% NO₂ made through NO + O3 for SAPRC07; 47% made through recycling from NO_Z for Xie
- Lower NO_X 77% more NO2 recycled from NO_z for Xie

Task 2. Synthesis of Isoprene-derived Epoxides and KnownSOA Tracers

Task 3. Indoor Chamber Experiments Generating SOA Formation Directly from Isoprene-Derived Epoxides

Evet #		[Epoxide]		Initial Seed	RH	
схрі. #	Epoxide	(ppb)	Seed Aerosol Type	Aerosol (μg/m ³)	(%)	T (°C)
1	IEPOX	300	(NH ₄) ₂ SO ₄	~20-30	~50-60	~20-25
2		300	$(NH_4)_2SO_4 + H_2SO_4$	~20-30	~50-60	~20-25
3	MAE	300	(NH ₄) ₂ SO ₄	~20-30	~50-60	~20-25
4		300	$(NH_4)_2SO_4 + H_2SO_4$	~20-30	~50-60	~20-25
5	none		(NH ₄) ₂ SO ₄	~20-30	~50-60	~20-25
6	none		$(NH_4)_2SO_4 + H_2SO_4$	~20-30	~50-60	~20-25
7	IEPOX	300	none	none	~50-60	~20-25
8	MAE	300	none	none	~50-60	~20-25

۰.

0.6 M (NH4)2SO4 + 0.6 M H2SO4

Task 4. Modeling of Isoprene-derived SOA Formation From Environmental Simulation Chambers

DOI: 10.1021/ez500406f Environ. Sci. Technol. Lett. 2015, 2, 38–42

pubs.acs.org/journal/estlcu

Japtations for non-commercial purposes.

Heterogeneous Reactions of Isoprene-Derived Epoxides: Reaction Probabilities and Molar Secondary Organic Aerosol Yield Estimates

Theran P. Riedel,[†] Ying-Hsuan Lin,[†] Sri Hapsari Budisulistiorini,[†] Cassandra J. Gaston,[‡] Joel A. Thornton,[‡] Zhenfa Zhang,[†] William Vizuete,[†] Avram Gold,[†] and Jason D. Surratt^{*,†}

Constraining Condensed-Phase Formation Kinetics of Secondary Organic Aerosol Components from Isoprene Epoxydiols

Theran P. Riedel, Zhenfa Zhang, Kevin Chu, Joel A. Thornton, William Vizuete, Avram Gold, and Jason D. Surratt *Manuscript in preparation*

Measuring Reactive Uptake

Measuring Reactive Uptake

From linear fit:

$$k_{total} = -m$$

 $k_{wall} = -m$

$$k_{total} \approx k_{het} + k_{wall}$$

[Riedel et al., 2015, ES&T Letters]

NORTH CAROLIN CHAPEL HILL

epoxide	aerosol	RH	aerosol $[H^+] (M)^a$	γ ± 1 σ
IEPOX	(NH ₄) ₂ SO ₄	0.50	7.74×10 ⁻⁵	$6.5 \times 10^{-4} \pm 6.4 \times 10^{-4}$
IEPOX	$MgSO_4 + H_2SO_4$	0.08	0.04	$1.1 \times 10^{-2} \pm 3 \times 10^{-3}$
IEPOX	$MgSO_4 + H_2SO_4$	0.53	0.73	$9.4 \times 10^{-3} \pm 3 \times 10^{-3}$
IEPOX	$(NH_4)_2SO_4 + H_2SO_4$	0.05	2.78	$2.1 \times 10^{-2} \pm 1 \times 10^{-3}$
IEPOX	$(NH_4)_2SO_4 + H_2SO_4$	0.59	2.01	$1.9 \times 10^{-2} \pm 2 \times 10^{-3}$
MAE	$MgSO_4 + H_2SO_4$	0.03	0.73	$4.9 \times 10^{-4} \pm 1 \times 10^{-4}$
MAE	$(NH_4)_2SO_4 + H_2SO_4$	0.03	2.78	$5.2 \times 10^{-4} \pm 1.1 \times 10^{-4}$

 γ values are consistent with those measured in a previous study [Gaston et al., 2014, *ES&T*] and with aqueous phase reaction mechanisms [Eddingsaas et al., 2010, *JPCA*) – dependence on [H⁺], [HSO₄⁻], [nucleophile], but [H⁺] found to have strongest effect

Chamber model setup:

- 0-D time-dependent chemical box model
- Initialize model with:
 - y from flow reactor measurements
 - epoxide mass injected from chamber measurements
 - DMA reported aerosol [surface area] and [mass] from chamber measurements
- Only epoxide losses are to particles and chamber walls
- Only particle losses are to chamber walls

Chamber model setup:

- 0-D time-dependent chemical box model
- Initialize model with:
 - *y* from flow reactor measurements
 - epoxide mass injected from chamber measurements
 - DMA reported aerosol [surface area] and [mass] from chamber measurements
- Only epoxide losses are to particles (makes SOA) and chamber walls
- Only particle losses are to chamber walls
- SOA production in the model:

$$P_{SOA} = \gamma \frac{S_a \omega}{4} \phi_{SOA} [epoxide]_{(g)}$$

[Riedel et al., 2015, ES&T Letters]

$IEPOX_{(aq)} + H^+ + H_2O \rightarrow 2$ -methytetrols + H ⁺	(R1)
$IEPOX_{(aq)} + HSO_4^- + H_2O \rightarrow 2$ -methytetrols + $H^+ + SO_4^{2-}$	(R2)
$IEPOX_{(aq)} + H^+ + SO_4^{2-} \rightarrow IEPOX$ -organosulfate + H ⁺	(R3)
$IEPOX_{(aq)} + HSO_4^- + SO_4^{2-} \rightarrow IEPOX$ -organosulfate + H^+	(R4)
$IEPOX_{(aq)} + H^+ \rightarrow C_5$ -alkene triols + H^+	(R5)
$IEPOX_{(aq)} + H^+ \rightarrow 3$ -MeTHF-3,4-diols + H^+	(R6)
$IEPOX_{(aq)} + H^+ + 2$ -methyltetrols \rightarrow IEPOX-dimer + H^+	(R7)
$IEPOX_{(aq)} + H^+ + IEPOX$ -OS \rightarrow IEPOX-dimerOS + H^+	(R8)
$IEPOX_{(aq)} + H^+ \rightarrow \text{other SOA} + H^+$	(R9)
$IEPOX_{(aq)} \rightarrow volatile products$	(R10)

SOA tracer formed	k	reaction
2-methyltetrols	9.0 × 10 ⁻⁴ M ⁻² s ^a	(R1)
2-methyltetrols	1.3 × 10 ⁻⁵ M ⁻² s ^a	(R2)
IEPOX-OS	$2.0 \times 10^{-4} \text{ M}^{-2} \text{ s}^{-3}$	(R3)
IEPOX-OS	2.9 × 10 ⁻⁶ M ⁻² s ^a	(R4)
C₅-alkene triols	$7.8\pm0.4 \times 10^{-4} \text{ M}^{-1} \text{ s}$	(R5)
3-MeTHF-3,4-diols	$9.2\pm1.2 \times 10^{-4} \text{ M}^{-1} \text{ s}$	(R6)
IEPOX-dimer	$7.7\pm2.7 \times 10^{-7} \text{ M}^{-2} \text{ s}$	(R7)
IEPOX-dimerOS	$8.1\pm3.3 \times 10^{-6} \text{ M}^{-2} \text{ s}$	(R8)
other SOA	$5.4\pm0.2 \times 10^{-3} \text{ M}^{-1} \text{ s}$	(R9)

^afrom Eddingsaas et al., 2010; see also Pye et al., 2013

Questions? www.unc.edu/~vizuete

Lower NOX case: JN2697RED

Case	Description	Kisom, ISOPO2	ISOPN yields	
Run	BASE	K*	0.6	
Run A	lower Kisom, ISOPO2	0.5K	0.6	
Run B	lower ISOPN yield	К	0	
		* K = (4	07e+8*EXP(-7694/TK) cm3/s	

- ISOPO2 isomerization rate has no impacts on O₃
- ISOPN yields shut-down reduces O₃ maximum by 5%

NO₂ Recycling Rate

- PANs accounts for 92% of the total NO2 recycling from NOz
- Xie mechanism predicts 64% more PNA than SAPRC07

Radical Cycle for Lower NO_X Case

Lower NOx

Do Organic Coatings Impact Uptake of IEPOX?

[[]Gaston et al., 2014, *ES&T*]

epoxide	aerosol	RH	aerosol $[H^+] (M)^a$	γ±1σ	modeled $oldsymbol{\phi}_{\mathit{SOA}}$ range	
IEPOX	(NH ₄) ₂ SO ₄	0.50	7.74×10 ⁻⁵	$6.5 \times 10^{-4} \pm 6.4 \times 10^{-4}$	0.17 - 0.21	
IEPOX	$MgSO_4 + H_2SO_4$	0.08	0.04	$1.1 \times 10^{-2} \pm 3 \times 10^{-3}$	0.04 - 0.06	
IEPOX	$MgSO_4 + H_2SO_4$	0.53	0.73	$9.4 \times 10^{-3} \pm 3 \times 10^{-3}$	0.03 - 0.05	
IEPOX	$(NH_4)_2SO_4 + H_2SO_4$	0.05	2.78	$2.1 \times 10^{-2} \pm 1 \times 10^{-3}$	0.10 - 0.12	
IEPOX	$(NH_4)_2SO_4 + H_2SO_4$	0.59	2.01	$1.9 \times 10^{-2} \pm 2 \times 10^{-3}$	0.06 - 0.08	
MAE	$MgSO_4 + H_2SO_4$	0.03	0.73	$4.9 \times 10^{-4} \pm 1 \times 10^{-4}$	0.07 - 0.14	
MAE	$(NH_4)_2SO_4 + H_2SO_4$	0.03	2.78	$5.2 \times 10^{-4} \pm 1.1 \times 10^{-4}$	0.16 - 0.25	

- ϕ_{SOA} ranges 0.03 0.21 for IEPOX
- ϕ_{soA} ranges 0.07 0.25 for MAE
- observed higher ϕ_{SOA} for $(NH_4)_2SO_4$ seed types
- similar ϕ_{soA} for highly acidic and near neutral seed
 - SOA growth takes longer for near neutral seed

 $SOA = tracer_1 + tracer_2 + tracer_i + \cdots tracer_n$

 $SOA = organosulfate + 2 - methyltetrol + C_5 - alkene triols + etc.$

Can't quantify all tracers... so we need a different approach.

[Riedel et al., 2015, ES&T Letters]

In Conjunction with Existing Chamber Data, γ Results Used in Model to Estimate ϕ_{SOA}

epoxide	aerosol	RH	aerosol [H^+] (M) ^a	γ ± 1 σ
IEPOX	(NH ₄) ₂ SO ₄	0.50	7.74×10 ⁻⁵	$6.5 \times 10^{-4} \pm 6.4 \times 10^{-4}$
IEPOX	$MgSO_4 + H_2SO_4$	0.08	0.04	$1.1 \times 10^{-2} \pm 3 \times 10^{-3}$
IEPOX	$MgSO_4 + H_2SO_4$	0.53	0.73	$9.4 \times 10^{-3} \pm 3 \times 10^{-3}$
IEPOX	$(NH_4)_2SO_4 + H_2SO_4$	0.05	2.78	$2.1 \times 10^{-2} \pm 1 \times 10^{-3}$
IEPOX	$(NH_4)_2SO_4 + H_2SO_4$	0.59	2.01	$1.9 \times 10^{-2} \pm 2 \times 10^{-3}$
MAE	$MgSO_4 + H_2SO_4$	0.03	0.73	$4.9 \times 10^{-4} \pm 1 \times 10^{-4}$
MAE	$(NH_4)_2SO_4 + H_2SO_4$	0.03	2.78	$5.2 \times 10^{-4} \pm 1.1 \times 10^{-4}$

Chosen to match aerosol composition and RH from chambers studies showing observable SOA production.

[Riedel et al., 2015, ES&T Letters]

Total predicted SOA mass = 0.45 μ g m⁻³

Measuring Reactive Uptake

